EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Elements of Applied Bifurcation Theory

Download or read book Elements of Applied Bifurcation Theory written by Yuri Kuznetsov and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 648 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing readers with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems, the focus here is on efficient numerical implementations of the developed techniques. The book is designed for advanced undergraduates or graduates in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the first while updating the context to incorporate recent theoretical developments, in particular new and improved numerical methods for bifurcation analysis.

Book Singularities and Groups in Bifurcation Theory

Download or read book Singularities and Groups in Bifurcation Theory written by Martin Golubitsky and published by Springer Science & Business Media. This book was released on 2013-11-27 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book has been written in a frankly partisian spirit-we believe that singularity theory offers an extremely useful approach to bifurcation prob lems and we hope to convert the reader to this view. In this preface we will discuss what we feel are the strengths of the singularity theory approach. This discussion then Ieads naturally into a discussion of the contents of the book and the prerequisites for reading it. Let us emphasize that our principal contribution in this area has been to apply pre-existing techniques from singularity theory, especially unfolding theory and classification theory, to bifurcation problems. Many ofthe ideas in this part of singularity theory were originally proposed by Rene Thom; the subject was then developed rigorously by John Matherand extended by V. I. Arnold. In applying this material to bifurcation problems, we were greatly encouraged by how weil the mathematical ideas of singularity theory meshed with the questions addressed by bifurcation theory. Concerning our title, Singularities and Groups in Bifurcation Theory, it should be mentioned that the present text is the first volume in a two-volume sequence. In this volume our emphasis is on singularity theory, with group theory playing a subordinate role. In Volume II the emphasis will be more balanced. Having made these remarks, Iet us set the context for the discussion of the strengths of the singularity theory approach to bifurcation. As we use the term, bifurcation theory is the study of equations with multiple solutions.

Book Methods of Bifurcation Theory

Download or read book Methods of Bifurcation Theory written by S.-N. Chow and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 529 pages. Available in PDF, EPUB and Kindle. Book excerpt: An alternative title for this book would perhaps be Nonlinear Analysis, Bifurcation Theory and Differential Equations. Our primary objective is to discuss those aspects of bifurcation theory which are particularly meaningful to differential equations. To accomplish this objective and to make the book accessible to a wider we have presented in detail much of the relevant background audience, material from nonlinear functional analysis and the qualitative theory of differential equations. Since there is no good reference for some of the mate rial, its inclusion seemed necessary. Two distinct aspects of bifurcation theory are discussed-static and dynamic. Static bifurcation theory is concerned with the changes that occur in the structure of the set of zeros of a function as parameters in the function are varied. If the function is a gradient, then variational techniques play an important role and can be employed effectively even for global problems. If the function is not a gradient or if more detailed information is desired, the general theory is usually local. At the same time, the theory is constructive and valid when several independent parameters appear in the function. In differential equations, the equilibrium solutions are the zeros of the vector field. Therefore, methods in static bifurcation theory are directly applicable.

Book Bifurcation Theory And Applications

Download or read book Bifurcation Theory And Applications written by Shouhong Wang and published by World Scientific. This book was released on 2005-06-27 with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers comprehensive bifurcation theory and its applications to dynamical systems and partial differential equations (PDEs) from science and engineering, including in particular PDEs from physics, chemistry, biology, and hydrodynamics.The book first introduces bifurcation theories recently developed by the authors, on steady state bifurcation for a class of nonlinear problems with even order nondegenerate nonlinearities, regardless of the multiplicity of the eigenvalues, and on attractor bifurcations for nonlinear evolution equations, a new notion of bifurcation.With this new notion of bifurcation, many longstanding bifurcation problems in science and engineering are becoming accessible, and are treated in the second part of the book. In particular, applications are covered for a variety of PDEs from science and engineering, including the Kuramoto-Sivashinsky equation, the Cahn-Hillard equation, the Ginzburg-Landau equation, reaction-diffusion equations in biology and chemistry, the Benard convection problem, and the Taylor problem. The applications provide, on the one hand, general recipes for other applications of the theory addressed in this book, and on the other, full classifications of the bifurcated attractor and the global attractor as the control parameters cross certain critical values, dictated usually by the eigenvalues of the linearized problems. It is expected that the book will greatly advance the study of nonlinear dynamics for many problems in science and engineering.

Book The Hopf Bifurcation and Its Applications

Download or read book The Hopf Bifurcation and Its Applications written by J. E. Marsden and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of these notes is to give a reasonahly com plete, although not exhaustive, discussion of what is commonly referred to as the Hopf bifurcation with applications to spe cific problems, including stability calculations. Historical ly, the subject had its origins in the works of Poincare [1] around 1892 and was extensively discussed by Andronov and Witt [1] and their co-workers starting around 1930. Hopf's basic paper [1] appeared in 1942. Although the term "Poincare Andronov-Hopf bifurcation" is more accurate (sometimes Friedrichs is also included), the name "Hopf Bifurcation" seems more common, so we have used it. Hopf's crucial contribution was the extension from two dimensions to higher dimensions. The principal technique employed in the body of the text is that of invariant manifolds. The method of Ruelle Takens [1] is followed, with details, examples and proofs added. Several parts of the exposition in the main text come from papers of P. Chernoff, J. Dorroh, O. Lanford and F. Weissler to whom we are grateful. The general method of invariant manifolds is common in dynamical systems and in ordinary differential equations: see for example, Hale [1,2] and Hartman [1]. Of course, other methods are also available. In an attempt to keep the picture balanced, we have included samples of alternative approaches. Specifically, we have included a translation (by L. Howard and N. Kopell) of Hopf's original (and generally unavailable) paper.

Book Bifurcation Control

Download or read book Bifurcation Control written by Guanrong Chen and published by Springer Science & Business Media. This book was released on 2003-08-26 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bifurcation control refers to the task of designing a controller that can modify the bifurcation properties of a given nonlinear system, so as to achieve some desirable dynamical behaviors. There exists no similar control theory-oriented book available in the market that is devoted to the subject of bifurcation control, written by control engineers for control engineers. World-renowned leading experts in the field provide their state-of-the-art survey about the extensive research that has been done over the last few years in this subject. The book is not only aimed at active researchers in the field of bifurcation control and its applications, but also at a general audience in related fields.

Book Bifurcations of Planar Vector Fields

Download or read book Bifurcations of Planar Vector Fields written by Freddy Dumortier and published by . This book was released on 2014-01-15 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Bifurcation Theory of Functional Differential Equations

Download or read book Bifurcation Theory of Functional Differential Equations written by Shangjiang Guo and published by Springer Science & Business Media. This book was released on 2013-07-30 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a crash course on various methods from the bifurcation theory of Functional Differential Equations (FDEs). FDEs arise very naturally in economics, life sciences and engineering and the study of FDEs has been a major source of inspiration for advancement in nonlinear analysis and infinite dimensional dynamical systems. The book summarizes some practical and general approaches and frameworks for the investigation of bifurcation phenomena of FDEs depending on parameters with chap. This well illustrated book aims to be self contained so the readers will find in this book all relevant materials in bifurcation, dynamical systems with symmetry, functional differential equations, normal forms and center manifold reduction. This material was used in graduate courses on functional differential equations at Hunan University (China) and York University (Canada).

Book Bifurcation Theory

    Book Details:
  • Author : Hansjörg Kielhöfer
  • Publisher : Springer Science & Business Media
  • Release : 2006-04-10
  • ISBN : 0387216332
  • Pages : 355 pages

Download or read book Bifurcation Theory written by Hansjörg Kielhöfer and published by Springer Science & Business Media. This book was released on 2006-04-10 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the past three decades, bifurcation theory has matured into a well-established and vibrant branch of mathematics. This book gives a unified presentation in an abstract setting of the main theorems in bifurcation theory, as well as more recent and lesser known results. It covers both the local and global theory of one-parameter bifurcations for operators acting in infinite-dimensional Banach spaces, and shows how to apply the theory to problems involving partial differential equations. In addition to existence, qualitative properties such as stability and nodal structure of bifurcating solutions are treated in depth. This volume will serve as an important reference for mathematicians, physicists, and theoretically-inclined engineers working in bifurcation theory and its applications to partial differential equations.

Book Bifurcation Theory And Methods Of Dynamical Systems

Download or read book Bifurcation Theory And Methods Of Dynamical Systems written by Maoan Han and published by World Scientific. This book was released on 1997-11-29 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dynamical bifurcation theory is concerned with the changes that occur in the global structure of dynamical systems as parameters are varied. This book makes recent research in bifurcation theory of dynamical systems accessible to researchers interested in this subject. In particular, the relevant results obtained by Chinese mathematicians are introduced as well as some of the works of the authors which may not be widely known. The focus is on the analytic approach to the theory and methods of bifurcations. The book prepares graduate students for further study in this area, and it serves as a ready reference for researchers in nonlinear sciences and applied mathematics.

Book Numerical Bifurcation Analysis for Reaction Diffusion Equations

Download or read book Numerical Bifurcation Analysis for Reaction Diffusion Equations written by Zhen Mei and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph is the first to provide readers with numerical tools for a systematic analysis of bifurcation problems in reaction-diffusion equations. Many examples and figures illustrate analysis of bifurcation scenario and implementation of numerical schemes. Readers will gain a thorough understanding of numerical bifurcation analysis and the necessary tools for investigating nonlinear phenomena in reaction-diffusion equations.

Book Practical Bifurcation and Stability Analysis

Download or read book Practical Bifurcation and Stability Analysis written by Rüdiger U. Seydel and published by Springer Science & Business Media. This book was released on 2009-11-27 with total page 493 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probably the first book to describe computational methods for numerically computing steady state and Hopf bifurcations. Requiring only a basic knowledge of calculus, and using detailed examples, problems, and figures, this is an ideal textbook for graduate students.

Book Numerical Continuation and Bifurcation in Nonlinear PDEs

Download or read book Numerical Continuation and Bifurcation in Nonlinear PDEs written by Hannes Uecker and published by SIAM. This book was released on 2021-08-19 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a hands-on approach to numerical continuation and bifurcation for nonlinear PDEs in 1D, 2D, and 3D. Partial differential equations (PDEs) are the main tool to describe spatially and temporally extended systems in nature. PDEs usually come with parameters, and the study of the parameter dependence of their solutions is an important task. Letting one parameter vary typically yields a branch of solutions, and at special parameter values, new branches may bifurcate. After a concise review of some analytical background and numerical methods, the author explains the free MATLAB package pde2path by using a large variety of examples with demo codes that can be easily adapted to the reader's given problem. Numerical Continuation and Bifurcation in Nonlinear PDEs will appeal to applied mathematicians and scientists from physics, chemistry, biology, and economics interested in the numerical solution of nonlinear PDEs, particularly the parameter dependence of solutions. It can be used as a supplemental text in courses on nonlinear PDEs and modeling and bifurcation.

Book Bifurcate

    Book Details:
  • Author : Bernard Stiegler
  • Publisher : Open Humanities Press
  • Release : 2021-12-08
  • ISBN : 9781785421228
  • Pages : 328 pages

Download or read book Bifurcate written by Bernard Stiegler and published by Open Humanities Press. This book was released on 2021-12-08 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: The collective work that produced this book is based on the claim that today's destructive development model is reaching its ultimate limits, and that its toxicity, which is increasingly massive, manifest and multidimensional (medical, environmental, mental, epistemological, economic - accumulating pockets of insolvency, which become veritable oceans), is generated above all by the fact that the current industrial economy is based in every sector on an obsolete physical model - a mechanism that ignores the constraints of locality in biology and the entropic tendency in reticulated computational information. In these gravely perilous times, we must bifurcate: there is no alternative.

Book Nonlinear Oscillations  Dynamical Systems  and Bifurcations of Vector Fields

Download or read book Nonlinear Oscillations Dynamical Systems and Bifurcations of Vector Fields written by John Guckenheimer and published by Springer Science & Business Media. This book was released on 2013-11-21 with total page 475 pages. Available in PDF, EPUB and Kindle. Book excerpt: An application of the techniques of dynamical systems and bifurcation theories to the study of nonlinear oscillations. Taking their cue from Poincare, the authors stress the geometrical and topological properties of solutions of differential equations and iterated maps. Numerous exercises, some of which require nontrivial algebraic manipulations and computer work, convey the important analytical underpinnings of problems in dynamical systems and help readers develop an intuitive feel for the properties involved.

Book Nonlinear Stability and Bifurcation Theory

Download or read book Nonlinear Stability and Bifurcation Theory written by Hans Troger and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: Every student in engineering or in other fields of the applied sciences who has passed through his curriculum knows that the treatment of nonlin ear problems has been either avoided completely or is confined to special courses where a great number of different ad-hoc methods are presented. The wide-spread believe that no straightforward solution procedures for nonlinear problems are available prevails even today in engineering cir cles. Though in some courses it is indicated that in principle nonlinear problems are solveable by numerical methods the treatment of nonlinear problems, more or less, is considered to be an art or an intellectual game. A good example for this statement was the search for Ljapunov functions for nonlinear stability problems in the seventies. However things have changed. At the beginning of the seventies, start ing with the work of V.1. Arnold, R. Thom and many others, new ideas which, however, have their origin in the work of H. Poincare and A. A. Andronov, in the treatment of nonlinear problems appeared. These ideas gave birth to the term Bifurcation Theory. Bifurcation theory allows to solve a great class of nonlinear problems under variation of parameters in a straightforward manner.

Book Dynamics and Bifurcations

Download or read book Dynamics and Bifurcations written by Jack K. Hale and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 577 pages. Available in PDF, EPUB and Kindle. Book excerpt: In recent years, due primarily to the proliferation of computers, dynamical systems has again returned to its roots in applications. It is the aim of this book to provide undergraduate and beginning graduate students in mathematics or science and engineering with a modest foundation of knowledge. Equations in dimensions one and two constitute the majority of the text, and in particular it is demonstrated that the basic notion of stability and bifurcations of vector fields are easily explained for scalar autonomous equations. Further, the authors investigate the dynamics of planar autonomous equations where new dynamical behavior, such as periodic and homoclinic orbits appears.