Download or read book Beyond Planar Graphs written by Seok-Hee Hong and published by Springer Nature. This book was released on 2020-09-30 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the first general and extensive review on the algorithmics and mathematical results of beyond planar graphs. Most real-world data sets are relational and can be modelled as graphs consisting of vertices and edges. Planar graphs are fundamental for both graph theory and graph algorithms and are extensively studied. Structural properties and fundamental algorithms for planar graphs have been discovered. However, most real-world graphs, such as social networks and biological networks, are non-planar. To analyze and visualize such real-world networks, it is necessary to solve fundamental mathematical and algorithmic research questions on sparse non-planar graphs, called beyond planar graphs.This book is based on the National Institute of Informatics (NII) Shonan Meeting on algorithmics on beyond planar graphs held in Japan in November, 2016. The book consists of 13 chapters that represent recent advances in various areas of beyond planar graph research. The main aims and objectives of this book include 1) to timely provide a state-of-the-art survey and a bibliography on beyond planar graphs; 2) to set the research agenda on beyond planar graphs by identifying fundamental research questions and new research directions; and 3) to foster cross-disciplinary research collaboration between computer science (graph drawing and computational geometry) and mathematics (graph theory and combinatorics). New algorithms for beyond planar graphs will be in high demand by practitioners in various application domains to solve complex visualization problems. This book therefore will be a valuable resource for researchers in graph theory, algorithms, and theoretical computer science, and will stimulate further deep scientific investigations into many areas of beyond planar graphs.
Download or read book Discrete Mathematics written by Oscar Levin and published by Createspace Independent Publishing Platform. This book was released on 2016-08-16 with total page 342 pages. Available in PDF, EPUB and Kindle. Book excerpt: This gentle introduction to discrete mathematics is written for first and second year math majors, especially those who intend to teach. The text began as a set of lecture notes for the discrete mathematics course at the University of Northern Colorado. This course serves both as an introduction to topics in discrete math and as the "introduction to proof" course for math majors. The course is usually taught with a large amount of student inquiry, and this text is written to help facilitate this. Four main topics are covered: counting, sequences, logic, and graph theory. Along the way proofs are introduced, including proofs by contradiction, proofs by induction, and combinatorial proofs. The book contains over 360 exercises, including 230 with solutions and 130 more involved problems suitable for homework. There are also Investigate! activities throughout the text to support active, inquiry based learning. While there are many fine discrete math textbooks available, this text has the following advantages: It is written to be used in an inquiry rich course. It is written to be used in a course for future math teachers. It is open source, with low cost print editions and free electronic editions.
Download or read book Geometric Graphs and Arrangements written by Stefan Felsner and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 179 pages. Available in PDF, EPUB and Kindle. Book excerpt: Among the intuitively appealing aspects of graph theory is its close connection to drawings and geometry. The development of computer technology has become a source of motivation to reconsider these connections, in particular geometric graphs are emerging as a new subfield of graph theory. Arrangements of points and lines are the objects for many challenging problems and surprising solutions in combinatorial geometry. The book is a collection of beautiful and partly very recent results from the intersection of geometry, graph theory and combinatorics.
Download or read book Graph Drawing and Network Visualization written by Fabrizio Frati and published by Springer. This book was released on 2018-01-25 with total page 636 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes revised selected papers from the 25th International Symposium on Graph Drawing and Network Visualization, GD 2017, held in Boston, MA, USA, in September 2017.The 34 full and 9 short papers presented in this volume were carefully reviewed and selected from 87 submissions. Also included in this book are 2 abstracts of keynote presentations, 16 poster abstracts, and 1 contest report. The papers are organized in topical sections named: straight-line representations; obstacles and visibility; topological graph theory; orthogonal representations and book embeddings; evaluations; tree drawings; graph layout designs; point-set embeddings; special representations; and beyond planarity.
Download or read book Discrete Mathematics written by László Lovász and published by Springer Science & Business Media. This book was released on 2006-05-10 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aimed at undergraduate mathematics and computer science students, this book is an excellent introduction to a lot of problems of discrete mathematics. It discusses a number of selected results and methods, mostly from areas of combinatorics and graph theory, and it uses proofs and problem solving to help students understand the solutions to problems. Numerous examples, figures, and exercises are spread throughout the book.
Download or read book Integer Flows and Cycle Covers of Graphs written by Cun-Quan Zhang and published by CRC Press. This book was released on 1997-01-02 with total page 402 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focuses on classical problems in graph theory, including the 5-flow conjectures, the edge-3-colouring conjecture, the 3-flow conjecture and the cycle double cover conjecture. The text highlights the interrelationships between graph colouring, integer flow, cycle covers and graph minors. It also concentrates on graph theoretical methods and results.
Download or read book Topics in Topological Graph Theory written by Lowell W. Beineke and published by Cambridge University Press. This book was released on 2009-07-09 with total page 387 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of topological ideas to explore various aspects of graph theory, and vice versa, is a fruitful area of research. There are links with other areas of mathematics, such as design theory and geometry, and increasingly with such areas as computer networks where symmetry is an important feature. Other books cover portions of the material here, but there are no other books with such a wide scope. This book contains fifteen expository chapters written by acknowledged international experts in the field. Their well-written contributions have been carefully edited to enhance readability and to standardize the chapter structure, terminology and notation throughout the book. To help the reader, there is an extensive introductory chapter that covers the basic background material in graph theory and the topology of surfaces. Each chapter concludes with an extensive list of references.
Download or read book The Fascinating World of Graph Theory written by Arthur Benjamin and published by Princeton University Press. This book was released on 2017-06-06 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: The history, formulas, and most famous puzzles of graph theory Graph theory goes back several centuries and revolves around the study of graphs—mathematical structures showing relations between objects. With applications in biology, computer science, transportation science, and other areas, graph theory encompasses some of the most beautiful formulas in mathematics—and some of its most famous problems. The Fascinating World of Graph Theory explores the questions and puzzles that have been studied, and often solved, through graph theory. This book looks at graph theory's development and the vibrant individuals responsible for the field's growth. Introducing fundamental concepts, the authors explore a diverse plethora of classic problems such as the Lights Out Puzzle, and each chapter contains math exercises for readers to savor. An eye-opening journey into the world of graphs, The Fascinating World of Graph Theory offers exciting problem-solving possibilities for mathematics and beyond.
Download or read book Graphs on Surfaces written by Bojan Mohar and published by Johns Hopkins University Press. This book was released on 2001-08-02 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graph theory is one of the fastest growing branches of mathematics. Until recently, it was regarded as a branch of combinatorics and was best known by the famous four-color theorem stating that any map can be colored using only four colors such that no two bordering countries have the same color. Now graph theory is an area of its own with many deep results and beautiful open problems. Graph theory has numerous applications in almost every field of science and has attracted new interest because of its relevance to such technological problems as computer and telephone networking and, of course, the internet. In this new book in the Johns Hopkins Studies in the Mathematical Science series, Bojan Mohar and Carsten Thomassen look at a relatively new area of graph theory: that associated with curved surfaces. Graphs on surfaces form a natural link between discrete and continuous mathematics. The book provides a rigorous and concise introduction to graphs on surfaces and surveys some of the recent developments in this area. Among the basic results discussed are Kuratowski's theorem and other planarity criteria, the Jordan Curve Theorem and some of its extensions, the classification of surfaces, and the Heffter-Edmonds-Ringel rotation principle, which makes it possible to treat graphs on surfaces in a purely combinatorial way. The genus of a graph, contractability of cycles, edge-width, and face-width are treated purely combinatorially, and several results related to these concepts are included. The extension by Robertson and Seymour of Kuratowski's theorem to higher surfaces is discussed in detail, and a shorter proof is presented. The book concludes with a survey of recent developments on coloring graphs on surfaces.
Download or read book The Mathematical Coloring Book written by Alexander Soifer and published by Springer Science & Business Media. This book was released on 2008-10-13 with total page 619 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an exciting history of the discovery of Ramsey Theory, and contains new research along with rare photographs of the mathematicians who developed this theory, including Paul Erdös, B.L. van der Waerden, and Henry Baudet.
Download or read book Drawing Graphs written by Michael Kaufmann and published by Springer. This book was released on 2003-06-29 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graph drawing comprises all aspects of visualizing structural relations between objects. The range of topics dealt with extends from graph theory, graph algorithms, geometry, and topology to visual languages, visual perception, and information visualization, and to computer-human interaction and graphics design. This monograph gives a systematic overview of graph drawing and introduces the reader gently to the state of the art in the area. The presentation concentrates on algorithmic aspects, with an emphasis on interesting visualization problems with elegant solutions. Much attention is paid to a uniform style of writing and presentation, consistent terminology, and complementary coverage of the relevant issues throughout the 10 chapters. This tutorial is ideally suited as an introduction for newcomers to graph drawing. Ambitioned practitioners and researchers active in the area will find it a valuable source of reference and information.
Download or read book The Petersen Graph written by D. A. Holton and published by Cambridge University Press. This book was released on 1993-04-22 with total page 367 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors examine various areas of graph theory, using the prominent role of the Petersen graph as a unifying feature.
Download or read book Computational Graph Theory written by Gottfried Tinhofer and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: One ofthe most important aspects in research fields where mathematics is "applied is the construction of a formal model of a real system. As for structural relations, graphs have turned out to provide the most appropriate tool for setting up the mathematical model. This is certainly one of the reasons for the rapid expansion in graph theory during the last decades. Furthermore, in recent years it also became clear that the two disciplines of graph theory and computer science have very much in common, and that each one has been capable of assisting significantly in the development of the other. On one hand, graph theorists have found that many of their problems can be solved by the use of com puting techniques, and on the other hand, computer scientists have realized that many of their concepts, with which they have to deal, may be conveniently expressed in the lan guage of graph theory, and that standard results in graph theory are often very relevant to the solution of problems concerning them. As a consequence, a tremendous number of publications has appeared, dealing with graphtheoretical problems from a computational point of view or treating computational problems using graph theoretical concepts.
Download or read book Applying Graph Theory in Ecological Research written by Mark R.T. Dale and published by Cambridge University Press. This book was released on 2017-11-09 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book clearly describes the many applications of graph theory to ecological questions, providing instruction and encouragement to researchers.
Download or read book Handbook of Graph Drawing and Visualization written by Roberto Tamassia and published by CRC Press. This book was released on 2013-08-19 with total page 857 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get an In-Depth Understanding of Graph Drawing Techniques, Algorithms, Software, and ApplicationsThe Handbook of Graph Drawing and Visualization provides a broad, up-to-date survey of the field of graph drawing. It covers topological and geometric foundations, algorithms, software systems, and visualization applications in business, education, scie
Download or read book Introduction to Graph Theory written by Richard J. Trudeau and published by Courier Corporation. This book was released on 2013-04-15 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aimed at "the mathematically traumatized," this text offers nontechnical coverage of graph theory, with exercises. Discusses planar graphs, Euler's formula, Platonic graphs, coloring, the genus of a graph, Euler walks, Hamilton walks, more. 1976 edition.
Download or read book The Mathematics of Chip Firing written by Caroline J. Klivans and published by CRC Press. This book was released on 2018-11-15 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Mathematics of Chip-firing is a solid introduction and overview of the growing field of chip-firing. It offers an appreciation for the richness and diversity of the subject. Chip-firing refers to a discrete dynamical system — a commodity is exchanged between sites of a network according to very simple local rules. Although governed by local rules, the long-term global behavior of the system reveals fascinating properties. The Fundamental properties of chip-firing are covered from a variety of perspectives. This gives the reader both a broad context of the field and concrete entry points from different backgrounds. Broken into two sections, the first examines the fundamentals of chip-firing, while the second half presents more general frameworks for chip-firing. Instructors and students will discover that this book provides a comprehensive background to approaching original sources. Features: Provides a broad introduction for researchers interested in the subject of chip-firing The text includes historical and current perspectives Exercises included at the end of each chapter About the Author: Caroline J. Klivans received a BA degree in mathematics from Cornell University and a PhD in applied mathematics from MIT. Currently, she is an Associate Professor in the Division of Applied Mathematics at Brown University. She is also an Associate Director of ICERM (Institute for Computational and Experimental Research in Mathematics). Before coming to Brown she held positions at MSRI, Cornell and the University of Chicago. Her research is in algebraic, geometric and topological combinatorics.