EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces

Download or read book Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces written by Ivan Singer and published by Springer Science & Business Media. This book was released on 2013-12-14 with total page 411 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Best Approximation in Inner Product Spaces

Download or read book Best Approximation in Inner Product Spaces written by Frank R. Deutsch and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first systematic study of best approximation theory in inner product spaces and, in particular, in Hilbert space. Geometric considerations play a prominent role in developing and understanding the theory. The only prerequisites for reading the book is some knowledge of advanced calculus and linear algebra.

Book The Theory of Best Approximation and Functional Analysis

Download or read book The Theory of Best Approximation and Functional Analysis written by Ivan Singer and published by SIAM. This book was released on 1974-01-01 with total page 102 pages. Available in PDF, EPUB and Kindle. Book excerpt: Results and problems in the modern theory of best approximation, in which the methods of functional analysis are applied in a consequent manner. This modern theory constitutes both a unified foundation for the classical theory of best approximation and a powerful tool for obtaining new results.

Book Fundamentals of Approximation Theory

Download or read book Fundamentals of Approximation Theory written by Hrushikesh Narhar Mhaskar and published by CRC Press. This book was released on 2000 with total page 580 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of approximation theory has become so vast that it intersects with every other branch of analysis and plays an increasingly important role in applications in the applied sciences and engineering. Fundamentals of Approximation Theory presents a systematic, in-depth treatment of some basic topics in approximation theory designed to emphasize the rich connections of the subject with other areas of study. With an approach that moves smoothly from the very concrete to more and more abstract levels, this text provides an outstanding blend of classical and abstract topics. The first five chapters present the core of information that readers need to begin research in this domain. The final three chapters the authors devote to special topics-splined functions, orthogonal polynomials, and best approximation in normed linear spaces- that illustrate how the core material applies in other contexts and expose readers to the use of complex analytic methods in approximation theory. Each chapter contains problems of varying difficulty, including some drawn from contemporary research. Perfect for an introductory graduate-level class, Fundamentals of Approximation Theory also contains enough advanced material to serve more specialized courses at the doctoral level and to interest scientists and engineers.

Book Constructive Aspects of Functional Analysis

Download or read book Constructive Aspects of Functional Analysis written by Giuseppe Geymonat and published by Springer Science & Business Media. This book was released on 2011-06-21 with total page 848 pages. Available in PDF, EPUB and Kindle. Book excerpt: A. Balakrishnan: A constructive approach to optimal control.- R. Glowinski: Méthodes itératives duales pour la minimisation de fonctionnelles convexes.- J.L. Lions: Approximation numérique des inéquations d’évolution.- G. Marchuk: Introduction to the methods of numerical analysis.- U. Mosco: An introduction to the approximate solution of variational inequalities.- I. Singer: Best approximation in normed linear spaces.- G. Strang: A Fourier analysis of the finite element variational method.- M. Zerner: Caractéristiques d’approximation des compacts dans les espaces fonctionnels et problèmes aux limites elliptiques.

Book Soft Computing

    Book Details:
  • Author : Pradip Debnath
  • Publisher : CRC Press
  • Release : 2024-09-30
  • ISBN : 1040098037
  • Pages : 371 pages

Download or read book Soft Computing written by Pradip Debnath and published by CRC Press. This book was released on 2024-09-30 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book examines the latest developments in the area of soft computing with engineering applications. It explores topics such as fuzzy sets, intuitionistic fuzzy sets, unmanned aerial vehicles, soft sets, neutrosophic sets, fractional calculus, big data analytics, and the mathematical foundations of convolutional neural network (CNNs). Soft Computing: Engineering Applications offers readers a comprehensive and in-depth understanding of various cutting-edge technologies that are transforming industries worldwide. The book explores soft computing techniques in a very systematic manner. It elucidates the concepts, theories, and applications of fuzzy sets, enabling readers to grasp the fundamentals and explore their applications in various fields. It provides new insight into unmanned aerial vehicle applications to fuzzy soft set based decision making. It then discusses new fixed point results in orthogonal neutrosophic generalized metric spaces and explores statistical convergence of triple sequences in a credibility space. The authors then provide readers with a solid grasp of the mathematical underpinnings of CNNs, enabling them to design, train, and optimize neural networks for image recognition, object detection, and other computer vision tasks. The authors also present new studies in fractional calculus and explores advanced visualization algorithms and techniques for big data analytics. Soft Computing will be useful for beginners and advanced researchers in engineering, applied sciences and healthcare professionals working in soft computing applications.

Book Approximation Theory and Methods

Download or read book Approximation Theory and Methods written by M. J. D. Powell and published by Cambridge University Press. This book was released on 1981-03-31 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most functions that occur in mathematics cannot be used directly in computer calculations. Instead they are approximated by manageable functions such as polynomials and piecewise polynomials. The general theory of the subject and its application to polynomial approximation are classical, but piecewise polynomials have become far more useful during the last twenty years. Thus many important theoretical properties have been found recently and many new techniques for the automatic calculation of approximations to prescribed accuracy have been developed. This book gives a thorough and coherent introduction to the theory that is the basis of current approximation methods. Professor Powell describes and analyses the main techniques of calculation supplying sufficient motivation throughout the book to make it accessible to scientists and engineers who require approximation methods for practical needs. Because the book is based on a course of lectures to third-year undergraduates in mathematics at Cambridge University, sufficient attention is given to theory to make it highly suitable as a mathematical textbook at undergraduate or postgraduate level.

Book Functional Analysis in Asymmetric Normed Spaces

Download or read book Functional Analysis in Asymmetric Normed Spaces written by Stefan Cobzas and published by Springer Science & Business Media. This book was released on 2012-10-30 with total page 229 pages. Available in PDF, EPUB and Kindle. Book excerpt: An asymmetric norm is a positive definite sublinear functional p on a real vector space X. The topology generated by the asymmetric norm p is translation invariant so that the addition is continuous, but the asymmetry of the norm implies that the multiplication by scalars is continuous only when restricted to non-negative entries in the first argument. The asymmetric dual of X, meaning the set of all real-valued upper semi-continuous linear functionals on X, is merely a convex cone in the vector space of all linear functionals on X. In spite of these differences, many results from classical functional analysis have their counterparts in the asymmetric case, by taking care of the interplay between the asymmetric norm p and its conjugate. Among the positive results one can mention: Hahn–Banach type theorems and separation results for convex sets, Krein–Milman type theorems, analogs of the fundamental principles – open mapping, closed graph and uniform boundedness theorems – an analog of the Schauder’s theorem on the compactness of the conjugate mapping. Applications are given to best approximation problems and, as relevant examples, one considers normed lattices equipped with asymmetric norms and spaces of semi-Lipschitz functions on quasi-metric spaces. Since the basic topological tools come from quasi-metric spaces and quasi-uniform spaces, the first chapter of the book contains a detailed presentation of some basic results from the theory of these spaces. The focus is on results which are most used in functional analysis – completeness, compactness and Baire category – which drastically differ from those in metric or uniform spaces. The book is fairly self-contained, the prerequisites being the acquaintance with the basic results in topology and functional analysis, so it may be used for an introduction to the subject. Since new results, in the focus of current research, are also included, researchers in the area can use it as a reference text.

Book Shock capturing and high order methods for hyperbolic conservation laws

Download or read book Shock capturing and high order methods for hyperbolic conservation laws written by Jan Glaubitz and published by Logos Verlag Berlin GmbH. This book was released on 2020-03-20 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis is concerned with the numerical treatment of hyperbolic conservation laws. These play an important role in describing many natural phenomena. Challenges in their theoretical as well as numerical study stem from the fact that spontaneous shock discontinuities can arise in their solutions, even in finite time and smooth initial states. Moreover, the numerical treatment of hyperbolic conservations laws involves many different fields from mathematics, physics, and computer science. As a consequence, this thesis also provides contributions to several different fields of research - which are still connected by numerical conservation laws, however. These contributions include, but are not limited to, the construction of stable high order quadrature rules for experimental data, the development of new stable numerical methods for conservation laws, and the investigation and design of shock capturing procedures as a means to stabilize high order numerical methods in the presence of (shock) discontinuities. Jan Glaubitz was born in Braunschweig, Germany, in 1990 and completed his mathematical studies (B.Sc., 2014, M.Sc., 2016, Dr. rer. nat., 2019) at TU Braunschweig. In 2016, he received awards from the German Mathematical Society (DMV) for his master's thesis as well as from the Society of Financial and Economic Mathematics of Braunschweig (VBFWM). In 2017, he was honored with the teaching award "LehrLEO" for the best tutorial at TU Braunschweig. Since 2020, he holds a position as a postdoctoral researcher at Dartmouth College, NH, USA.

Book Rational Approximation of Real Functions

Download or read book Rational Approximation of Real Functions written by P. P. Petrushev and published by Cambridge University Press. This book was released on 2011-03-03 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: This 1987 book examines the approximation of real functions by real rational functions. These are a more convenient tool than polynomials, and interest in them was growing, especially after D. Newman's work in the mid-sixties. The authors present the basic achievements of the subject and also discuss some topics from complex rational approximation.

Book Geometric Approximation Theory

Download or read book Geometric Approximation Theory written by Alexey R. Alimov and published by Springer Nature. This book was released on 2022-03-29 with total page 523 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph provides a comprehensive introduction to the classical geometric approximation theory, emphasizing important themes related to the theory including uniqueness, stability, and existence of elements of best approximation. It presents a number of fundamental results for both these and related problems, many of which appear for the first time in monograph form. The text also discusses the interrelations between main objects of geometric approximation theory, formulating a number of auxiliary problems for demonstration. Central ideas include the problems of existence and uniqueness of elements of best approximations as well as properties of sets including subspaces of polynomials and splines, classes of rational functions, and abstract subsets of normed linear spaces. The book begins with a brief introduction to geometric approximation theory, progressing through fundamental classical ideas and results as a basis for various approximation sets, suns, and Chebyshev systems. It concludes with a review of approximation by abstract sets and related problems, presenting novel results throughout the section. This text is suitable for both theoretical and applied viewpoints and especially researchers interested in advanced aspects of the field.

Book Mathematical Aspects of Signal Processing

Download or read book Mathematical Aspects of Signal Processing written by Pradip Sircar and published by Cambridge University Press. This book was released on 2016-10-13 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written using clear and accessible language, this text provides detailed coverage of the core mathematical concepts underpinning signal processing. All the core areas of mathematics are covered, including generalized inverses, singular value decomposition, function representation, and optimization, with detailed explanations of how basic concepts in these areas underpin the methods used to perform signal processing tasks. A particular emphasis is placed on the practical applications of signal processing, with numerous in-text practice questions and real-world examples illustrating key concepts, and MATLAB programs with accompanying graphical representations providing all the necessary computational background. This is an ideal text for graduate students taking courses in signal processing and mathematical methods, or those who want to establish a firm foundation in these areas before progressing to more advanced study.

Book Encyclopaedia of Mathematics

Download or read book Encyclopaedia of Mathematics written by M. Hazewinkel and published by Springer. This book was released on 2013-12-01 with total page 927 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Numerical Mathematics

    Book Details:
  • Author : Günther Hämmerlin
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 1461244420
  • Pages : 437 pages

Download or read book Numerical Mathematics written by Günther Hämmerlin and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: "In truth, it is not knowledge, but learning, not possessing, but production, not being there, but travelling there, which provides the greatest pleasure. When I have completely understood something, then I turn away and move on into the dark; indeed, so curious is the insatiable man, that when he has completed one house, rather than living in it peacefully, he starts to build another. " Letter from C. F. Gauss to W. Bolyai on Sept. 2, 1808 This textbook adds a book devoted to applied mathematics to the series "Grundwissen Mathematik. " Our goals, like those of the other books in the series, are to explain connections and common viewpoints between various mathematical areas, to emphasize the motivation for studying certain prob lem areas, and to present the historical development of our subject. Our aim in this book is to discuss some of the central problems which arise in applications of mathematics, to develop constructive methods for the numerical solution of these problems, and to study the associated questions of accuracy. In doing so, we also present some theoretical results needed for our development, especially when they involve material which is beyond the scope of the usual beginning courses in calculus and linear algebra. This book is based on lectures given over many years at the Universities of Freiburg, Munich, Berlin and Augsburg.

Book Topics in Approximation Theory

Download or read book Topics in Approximation Theory written by Harold S. Shapiro and published by Springer. This book was released on 2006-11-15 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Encyclopaedia of Mathematics

Download or read book Encyclopaedia of Mathematics written by Michiel Hazewinkel and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 517 pages. Available in PDF, EPUB and Kindle. Book excerpt: This ENCYCLOPAEDIA OF MATHEMATICS aims to be a reference work for all parts of mathematics. It is a translation with updates and editorial comments of the Soviet Mathematical En cyclopaedia published by 'Soviet Encyclopaedia Publishing House' in five volumes in 1977 - 1985. The annotated translation consists of ten volumes including a special index volume. There are three kinds of articles in this ENCYCLOPAEDIA. First of all there are survey-type articles dealing with the various main directions in mathematics (where a rather fine subdivision has been used). The main requirement for these articles has been that they should give a reasonably complete up-to-date account of the current state of affairs in these areas and that they should be maximally accessible. On the whole, these articles should be understandable to mathe matics students in their first specialization years, to graduates from other mathematical areas and, depending on the specific subject, to specialists in other domains of science, engineers and teachers of mathematics. These articles treat their material at a fairly general level and aim to give an idea of the kind of problems, techniques and concepts involved in the area in question. They also contain background and motivation rather than precise statements of precise theorems with detailed definitions and technical details on how to carry out proofs and constructions. The second kind of article, of medium length, contains more detailed concrete problems, results and techniques.

Book Mathematical Analysis

    Book Details:
  • Author : R. V. Gamkrelidze
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 1468433032
  • Pages : 223 pages

Download or read book Mathematical Analysis written by R. V. Gamkrelidze and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 223 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains three articles: "Asymptotic methods in the theory of ordinary differential equations" b'y V. F. Butuzov, A. B. Vasil'eva, and M. V. Fedoryuk, "The theory of best ap proximation in Dormed linear spaces" by A. L. Garkavi, and "Dy namical systems with invariant measure" by A. 'VI. Vershik and S. A. Yuzvinskii. The first article surveys the literature on linear and non linear singular asymptotic problems, in particular, differential equations with a small parameter. The period covered by the survey is primarily 1962-1967. The second article is devoted to the problem of existence, characterization, and uniqueness of best approximations in Banach spaces. One of the chapters also deals with the problem of the convergence of positive operators, inasmuch as the ideas and methods of this theory are close to those of the theory of best ap proximation. The survey covers the literature of the decade 1958-1967. The third article is devoted to a comparatively new and rapid ly growing branch of mathematics which is closely related to many classical and modern mathematical disciplines. A survey is given of results in entropy theory, classical dynamic systems, ergodic theorems, etc. The results surveyed were primarily published during the period 1956-1967.