Download or read book Behaviour of Energetic Coherent Structures in Turbulent Pipe Flow at High Reynolds Numbers written by Zeinab Hallol and published by Cuvillier Verlag. This book was released on 2021-10-26 with total page 146 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this thesis, coherent turbulent structures in turbulent pipe flow are investigated at relatively high Reynolds numbers and study their association in both total kinetic energy and Reynolds shear stress. Experimental investigations have been performed in Cottbus Large Pipe test facility (CoLaPipe) for pipe flow over a wide range of Reynolds number 8 × 104 ≤ ReD ≤ 1 × 106, located at the Aerodynamics and Fluid Mechanics Department, Brandenburg University of Technology Cottbus- Senftenberg (BTU). The first part of the thesis focuses on determining the contribution of the coherent structures using one-dimensional spectral analysis and assessing the structures behaviour in the outer region of pipe flow using high spatial resolution Hot-wire measurement up to 30kHz. The results of the power and pre-multiplied spectrum of stream-wise velocity indicate that the wavelength value of very large scale motions (VLSMs) acquires 19R at a maximum Reynolds number range ReD=1 × 106 (Reτ =19000). On the other hand, large-scale motions have a wavelength value of 3R over different Reynolds number range. Regarding the identified wavelength values, it is observed that contribution to energy for structures greater than 3R carries 55% of total kinetic energy. In addition, temporal-spatial resolution using the High-speed PIV measurements has been performed in CoLaPipe to estimate the contribution magnitude of stream-wise/wall-normal velocity fluctuations to total kinetic energy and Reynolds shear stress in the logarithmic and outer layer.
Download or read book Direct Numerical Simulation of Very Large Scale Motions in Turbulent Pipe Flow written by Christian Bauer and published by Cuvillier Verlag. This book was released on 2021-02-01 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: Die turbulente Rohrströmung ist nicht nur von großer Bedeutung für Anwendungen im Ingenieurbereich, sondern auch für die Grundlagenforschung von wandnaher Turbulenz. In der vorliegenden Arbeit wird die Interaktion sogenannter turbulenter Superstrukturen (engl.: very-large-scale motions, VLSMs) mit der kleinskaligen Wandturbulenz auf Basis der Methode der direkten numerischen Simulation untersucht. Dabei werden Schubspannungs-Reynoldszahlen bis Reτ = 2880 und Rohrlängen bis L = 42R berücksichtigt. Es wird das Konvergenz- und Skalierungsverhalten verschiedener statistischer Momente der Geschwindigkeitsverteilung untersucht und in Bezug auf VLSMs diskutiert. Die folgende Analyse der axialen Energietransportgleichung des gefilterten Geschwindigkeitsfeldes legt offen, dass VLSMs Energie von der mittleren Strömung zugeführt bekommen, ähnlich den kleinskaligen Strukturen durch den turbulenten Produktionsmechanismus. Die verschiedenen Terme der Energiebilanz werden sowohl anhand von mittleren Profilen, als auch instantanen Strömungsvisualisierungen und drei-dimensionalen Korrelationen diskutiert, wobei auch auf das Phänomen der inversen turbulenten Energiekaskade eingegangen wird. Die Forschungsarbeit gewährt dabei neue Einblicke in die Interaktion der VLSMs mit dem turbulenten Wandzyklus und trägt zum besseren Verständnis der turbulenten Rohrströmung bei. Turbulent pipe flow is not only of importance to engineering applications but also of fundamental interest to the study of wall-bounded turbulence. In the present work, the interaction of the so-called very-large-scale motions (VLSMs) with the near-wall, small-scale turbulence is explored by means of direct numerical simulation for friction Reynolds numbers up to Reτ = 2880 and pipe lengths up to L = 42R. Besides, the convergence and the scaling of different order moments of the velocity distribution are studied and also discussed with regard to VLSMs. The subsequent analysis of the streamwise energy budget equation of the filtered velocity field reveals that VLSMs obtain their energy from the mean velocity field via a production mechanism similar to the one known from the near-wall cycle. Moreover, the different energy budget terms are investigated by means of statistical averages, instantaneous flow field visualisations, and three-dimensional correlations, wherein the backscattering phenomenon is also dealt with. In brief, the research sheds new light on our understanding of the interaction between VLSMs and the near-wall cycle and leads to a better grasp of turbulent pipe flow in general.
Download or read book Ten Chapters in Turbulence written by Peter A. Davidson and published by Cambridge University Press. This book was released on 2013 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: Leading experts summarize our current understanding of the fundamental nature of turbulence, covering a wide range of topics.
Download or read book Liutex and Its Applications in Turbulence Research written by Chaoqun Liu and published by Academic Press. This book was released on 2020-10-29 with total page 460 pages. Available in PDF, EPUB and Kindle. Book excerpt: Liutex and Its Applications in Turbulence Research reviews the history of vortex definition, provides an accurate mathematical definition of vortices, and explains their applications in flow transition, turbulent flow, flow control, and turbulent flow experiments. The book explains the term "Rortex" as a mathematically defined rigid rotation of fluids or vortex, which could help solve many longstanding problems in turbulence research. The accurate mathematical definition of the vortex is important in a range of industrial contexts, including aerospace, turbine machinery, combustion, and electronic cooling systems, so there are many areas of research that can benefit from the innovations described here. This book provides a thorough survey of the latest research in generalized and flow-thermal, unified, law-of-the-wall for wall-bounded turbulence. Important theory and methodologies used for developing these laws are described in detail, including: the classification of the conventional turbulent boundary layer concept based on proper velocity scaling; the methodology for identification of the scales of velocity, temperature, and length needed to establish the law; and the discovery, proof, and strict validations of the laws, with both Reynolds and Prandtl number independency properties using DNS data. The establishment of these statistical laws is important to modern fluid mechanics and heat transfer research, and greatly expands our understanding of wall-bounded turbulence. - Provides an accurate mathematical definition of vortices - Provides a thorough survey of the latest research in generalized and flow-thermal, unified, law-of-the-wall for wall-bounded turbulence - Explains the term "Rortex as a mathematically defined rigid rotation of fluids or vortex - Covers the statistical laws important to modern fluid mechanics and heat transfer research, and greatly expands our understanding of wall-bounded turbulence
Download or read book The Structure of Turbulent Shear Flow written by A. A. R. Townsend and published by Cambridge University Press. This book was released on 1976 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: Develops a physical theory from the mass of experimental results, with revisions to reflect advances of recent years.
Download or read book Turbulence Coherent Structures Dynamical Systems and Symmetry written by Philip Holmes and published by Cambridge University Press. This book was released on 2012-02-23 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: Describes methods revealing the structures and dynamics of turbulence for engineering, physical science and mathematics researchers working in fluid dynamics.
Download or read book Fluid Flow Phenomena written by Paolo Orlandi and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with the simulation of the incompressible Navier-Stokes equations for laminar and turbulent flows. The book is limited to explaining and employing the finite difference method. It furnishes a large number of source codes which permit to play with the Navier-Stokes equations and to understand the complex physics related to fluid mechanics. Numerical simulations are useful tools to understand the complexity of the flows, which often is difficult to derive from laboratory experiments. This book, then, can be very useful to scholars doing laboratory experiments, since they often do not have extra time to study the large variety of numerical methods; furthermore they cannot spend more time in transferring one of the methods into a computer language. By means of numerical simulations, for example, insights into the vorticity field can be obtained which are difficult to obtain by measurements. This book can be used by graduate as well as undergraduate students while reading books on theoretical fluid mechanics; it teaches how to simulate the dynamics of flow fields on personal computers. This will provide a better way of understanding the theory. Two chapters on Large Eddy Simulations have been included, since this is a methodology that in the near future will allow more universal turbulence models for practical applications. The direct simulation of the Navier-Stokes equations (DNS) is simple by finite-differences, that are satisfactory to reproduce the dynamics of turbulent flows. A large part of the book is devoted to the study of homogeneous and wall turbulent flows. In the second chapter the elementary concept of finite difference is given to solve parabolic and elliptical partial differential equations. In successive chapters the 1D, 2D, and 3D Navier-Stokes equations are solved in Cartesian and cylindrical coordinates. Finally, Large Eddy Simulations are performed to check the importance of the subgrid scale models. Results for turbulent and laminar flows are discussed, with particular emphasis on vortex dynamics. This volume will be of interest to graduate students and researchers wanting to compare experiments and numerical simulations, and to workers in the mechanical and aeronautic industries.
Download or read book Progress in Wall Turbulence 2 written by Michel Stanislas and published by Springer. This book was released on 2015-08-17 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the proceedings of the ERCOFTAC Workshop on Progress in Wall Turbulence: Understanding and Modelling, that was held in Lille, France from June 18 to 20, 2014. The workshop brought together world specialists of near wall turbulence and stimulated exchanges between them around up-to-date theories, experiments, simulations and numerical models. This book contains a coherent collection of recent results on near wall turbulence including theory, new experiments, DNS and modeling with RANS, LES. The fact that both physical understanding and modeling by different approaches are addressed by the best specialists in a single workshop is original.
Download or read book Coherent Flow Structures at Earth s Surface written by Jeremy G. Venditti and published by John Wiley & Sons. This book was released on 2013-08-28 with total page 586 pages. Available in PDF, EPUB and Kindle. Book excerpt: An expert review of recent progress in the study of turbulent flows with a focus on recently identified organized structures. This book reviews the recent progress in the study of the turbulent flows that sculpt the Earth’s surface, focusing in particular on the organized structures that have been identified in recent years within turbulent flows. These coherent flow structures can include eddies or vortices at the scale of individual grains, through structures that scale with the flow depth in rivers or estuaries, to the large-scale structure of flows at the morphological or landform scale. These flow structures are of wide interest to the scientific community because they play an important role in fluid dynamics and influence the transport, erosion and deposition of sediment and pollutants in a wide variety of fluid flow environments. Scientific knowledge of these structures has improved greatly over the past 20 years as computational fluid dynamics has come to play an increasing important part in building our understanding of coherent flow structures across a broad range of scales. Chapters comprise a series of major, invited papers and a selection of the most novel, innovative papers presented at the second Coherent Flow Structures Conference held August 3-5, 2011 at Simon Fraser University in Burnaby, British Columbia. Chapters focus on six major themes: Dynamics of coherent flow structures (CFS) in geophysical flows Interaction of turbulent flows, vegetation and ecological habitats Coherent structure of atmospheric flows Numerical modeling of coherent flow structures Turbulence in open channel flows Coherent flow structures, sediment transport and morphological feedbacks.
Download or read book Engineering Turbulence Modelling and Experiments 4 written by D. Laurence and published by Elsevier. This book was released on 1999-04-14 with total page 975 pages. Available in PDF, EPUB and Kindle. Book excerpt: These proceedings contain the papers presented at the 4th International Symposium on Engineering Turbulence Modelling and Measurements held at Ajaccio, Corsica, France from 24-26 May 1999. It follows three previous conferences on the topic of engineering turbulence modelling and measurements. The purpose of this series of symposia is to provide a forum for presenting and discussing new developments in the area of turbulence modelling and measurements, with particular emphasis on engineering-related problems. Turbulence is still one of the key issues in tackling engineering flow problems. As powerful computers and accurate numerical methods are now available for solving the flow equations, and since engineering applications nearly always involve turbulence effects, the reliability of CFD analysis depends more and more on the performance of the turbulence models. Successful simulation of turbulence requires the understanding of the complex physical phenomena involved and suitable models for describing the turbulent momentum, heat and mass transfer. For the understanding of turbulence phenomena, experiments are indispensable, but they are equally important for providing data for the development and testing of turbulence models and hence for CFD software validation.
Download or read book Self sustaining Mechanisms of Wall Turbulence written by Ronald Lee Panton and published by Computational Mechanics. This book was released on 1997 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: Why is wall turbulence self-sustaining? In this book well-regarded researchers not only discuss what they know and believe, but also speculate on ideas that still require numerical or experimental testing and verification. An initial brief history of boundary layer structure research is followed by chapters on experimental information and specific topics within the subject. There are then sections on computational aspects.
Download or read book Particle Image Velocimetry written by Markus Raffel and published by Springer Science & Business Media. This book was released on 2007-08-09 with total page 460 pages. Available in PDF, EPUB and Kindle. Book excerpt: This immensely practical guide to PIV provides a condensed, yet exhaustive guide to most of the information needed for experiments employing the technique. This second edition has updated chapters on the principles and extra information on microscopic, high-speed and three component measurements as well as a description of advanced evaluation techniques. What’s more, the huge increase in the range of possible applications has been taken into account as the chapter describing these applications of the PIV technique has been expanded.
Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1992 with total page 312 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Experimental Investigation of the Problem of Surface Roughness written by H. Schlichting and published by . This book was released on 1937 with total page 604 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on the universal laws of turbulent velocity distribution at rough and smooth walls, there is in the present work presented a method that allows surface roughness tests and in particular, measurements on the roughness of ship surfaces to be carried out in a much simpler manner. The types of roughness investigated were in the form of flat, rough plates installed in a square-section rectangular channel, the other three walls always being smooth. Twenty-one plates of various roughness were investigated, the roughness elements being the following: spheres of diameter 0.41 and 0.21, respectively, spherical segments, cones, and "short" and "long" angles.
Download or read book New Approaches and Concepts in Turbulence written by T. Dracos and published by Springer Science & Business Media. This book was released on 1993-09-01 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains the proceedings of a colloquium held in Monte Verità from September 9-13, 1991. Special care has been taken to devote adequate space to the scientific discussions, which claimed about half of the time available. Scientists from all over the world presented their views on the importance of kinematic properties, topology and fractal geometry, and on the dynamic behaviour of turbulent flows. They debated the importance of coherent structures and the possibility to incorporate these in the statistical theory of turbulence, as well as their significance for the reduction of the degrees of freedom and the prospective of dynamical systems and chaos approaches to the problem of turbulence. Also under discussion was the relevance of these new approaches to the study of the instability and the origin of turbulence, and the importance of numerical and physical experiments in improving the understanding of turbulence.
Download or read book Large Eddy Simulations of Turbulence written by M. Lesieur and published by Cambridge University Press. This book was released on 2005-08-22 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: Large-Eddy Simulations of Turbulence is a reference for LES, direct numerical simulation and Reynolds-averaged Navier-Stokes simulation.
Download or read book Applied mechanics reviews written by and published by . This book was released on 1948 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: