EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Behavior of Piles During Earthquake induced Lateral Spreading

Download or read book Behavior of Piles During Earthquake induced Lateral Spreading written by Priyanshu Singh and published by . This book was released on 2002 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Liquefaction induced Lateral Spreading and Its Effects on Pile Foundations

Download or read book Liquefaction induced Lateral Spreading and Its Effects on Pile Foundations written by Liangcai He and published by . This book was released on 2005 with total page 886 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Seismic Performance and Simulation of Pile Foundations in Liquefied and Laterally Spreading Ground

Download or read book Seismic Performance and Simulation of Pile Foundations in Liquefied and Laterally Spreading Ground written by Ross W. Boulanger and published by . This book was released on 2006 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proceedings of a workshop on Seismic Performance and Simulation of Pile Foundations in Liquefied and Laterally Spreading Ground, held in Davis, California, March 16-18, 2005. Sponsored by the Pacific Earthquake Engineering Research Center; University of California at Berkeley; Center for Urban Earthquake Engineering; Tokyo Institute of Technology; Geo-Institute of ASCE. This collection contains 25 papers that discuss physical measurements and observations from earthquake case histories, field tests in blast-liquefied ground, dynamic centrifuge model studies, and large-scale shaking table studies. Papers contain recent findings on fundamental soil-pile interaction mechanisms, numerical analysis methods, and reviews and evaluations of existing and emerging design methodologies. This proceeding provides comprehensive coverage of a major issue in earthquake engineering practice and hazard mitigation efforts.

Book Design of Pile Foundations in Liquefiable Soils

Download or read book Design of Pile Foundations in Liquefiable Soils written by Gopal Madabhushi and published by Imperial College Press. This book was released on 2010 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: Pile foundations are the most common form of deep foundations that are used both onshore and offshore to transfer large superstructural loads into competent soil strata. This book provides many case histories of failure of pile foundations due to earthquake loading and soil liquefaction. Based on the observed case histories, the possible mechanisms of failure of the pile foundations are postulated. The book also deals with the additional loading attracted by piles in liquefiable soils due to lateral spreading of sloping ground. Recent research at Cambridge forms the backbone of this book with the design methodologies being developed directly based on quantified centrifuge test results and numerical analysis. The book provides designers and practicing civil engineers with a sound knowledge of pile behaviour in liquefiable soils and easy-to-use methods to design pile foundations in seismic regions. For graduate students and researchers, it brings together the latest research findings on pile foundations in a way that is relevant to geotechnical practice. Sample Chapter(s). Foreword (85 KB). Chapter 1: Performance of Pile Foundations (4,832 KB). Contents: Performance of Pile Foundations; Inertial and Kinematic Loading; Accounting for Axial Loading in Level Ground; Lateral Spreading of Sloping Ground; Axial Loading on Piles in Laterally Spreading Ground; Design Examples. Readership: Researchers, academics, designers and graduate students in earthquake engineering, civil engineering and ocean/coastal engineering.

Book Analysis and Design for Inelastic Structural Response of Extended Pile Shaft Foundations in Laterally Spreading Ground During Earthquakes

Download or read book Analysis and Design for Inelastic Structural Response of Extended Pile Shaft Foundations in Laterally Spreading Ground During Earthquakes written by Arash Khosravifar and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Experiences from past earthquakes have shown that lateral spreading associated with liquefaction of cohesionless soils can be a cause of severe damage to bridge foundations. Large diameter extended pile shafts can be an effective bridge foundation choice for areas subjected to lateral spreading because they offer greater stiffness and strength relative to the magnitude of lateral spreading loads that can develop against them. A limited degree of plastic hinging below the ground surface may be allowable in design of extended pile shafts. Issues for design for extended pile shafts include: (a) how to estimate the demands due to superstructure inertia and lateral spreading in liquefied soils, and (b) how to combine these two loads in estimating the local and global inelastic demands on the structure. Studies of the response of pile foundations and pile-supported structures in liquefiable soils using physical models, numerical models, and case studies have provided the basis for a number of design recommendations. The guidance is, however, quite varied regarding how lateral spreading and superstructure inertial loads should be combined in design. To answer the above questions a series of Nonlinear Dynamic Finite Element Analyses (NDA) have been performed to investigate inelastic response of extended pile shafts subjected to liquefaction-induced lateral spreading, covering a range of soil, pile, and ground motion conditions. The results of NDA were first used to show that combined effects of lateral spreading and superstructure inertia produce larger demands than are produced by either loading case alone, such that the combined demand cannot be enveloped by analyzing the two load cases separately. The results were then used to evaluate current equivalent static analysis (ESA) method (Caltrans, 2008), with the relatively poor agreement illustrating the limitations of methods that do not combine the two loads. The results of NDA parametric study were then used to develop and calibrate an ESA procedure. The ESA procedure addresses both the nonliquefaction and liquefaction cases, and includes criteria that identify conditions which tend to produce excessive demands or collapse conditions. Finally, a series of three-dimensional (3D) Nonlinear Dynamic Finite Element Analyses (NDA) were performed to examine inelastic behavior of large diameter extended pile shafts subjected to earthquake shaking and liquefaction-induced lateral spreading. The purpose of these analyses was to evaluate the differences between 2D and 3D simulations, understand the source of any differences, and evaluate whether those differences would affect design recommendations for Equivalent Static Analysis (ESA).

Book State of the Art and Practice in the Assessment of Earthquake Induced Soil Liquefaction and Its Consequences

Download or read book State of the Art and Practice in the Assessment of Earthquake Induced Soil Liquefaction and Its Consequences written by National Academies of Sciences, Engineering, and Medicine and published by . This book was released on 2019-01-30 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: Earthquake-induced soil liquefaction (liquefaction) is a leading cause of earthquake damage worldwide. Liquefaction is often described in the literature as the phenomena of seismic generation of excess porewater pressures and consequent softening of granular soils. Many regions in the United States have been witness to liquefaction and its consequences, not just those in the west that people associate with earthquake hazards. Past damage and destruction caused by liquefaction underline the importance of accurate assessments of where liquefaction is likely and of what the consequences of liquefaction may be. Such assessments are needed to protect life and safety and to mitigate economic, environmental, and societal impacts of liquefaction in a cost-effective manner. Assessment methods exist, but methods to assess the potential for liquefaction triggering are more mature than are those to predict liquefaction consequences, and the earthquake engineering community wrestles with the differences among the various assessment methods for both liquefaction triggering and consequences. State of the Art and Practice in the Assessment of Earthquake-Induced Soil Liquefaction and Its Consequences evaluates these various methods, focusing on those developed within the past 20 years, and recommends strategies to minimize uncertainties in the short term and to develop improved methods to assess liquefaction and its consequences in the long term. This report represents a first attempt within the geotechnical earthquake engineering community to consider, in such a manner, the various methods to assess liquefaction consequences.

Book Single Piles in Liquefiable Ground

Download or read book Single Piles in Liquefiable Ground written by Rui Wang and published by Springer. This book was released on 2016-03-17 with total page 131 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis focuses on the seismic response of piles in liquefiable ground. It describes the design of a three-dimensional, unified plasticity model for large post-liquefaction shear deformation of sand, formulated and implemented for parallel computing. It also presents a three-dimensional, dynamic finite element analysis method for piles in liquefiable ground, developed on the basis of this model,. Employing a combination of case analysis, centrifuge shaking table experiments and numerical simulations using the proposed methods, it demonstrates the seismic response patterns of single piles in liquefiable ground. These include basic force-resistance mode, kinematic and inertial interaction coupling mechanism and major influence factors. It also discusses a beam on the nonlinear Winkler foundation (BNWF) solution and a modified neutral plane solution developed and validated using centrifuge experiments for piles in consolidating and reconsolidating ground. Lastly, it studies axial pile force and settlement during post-earthquake reconsolidation, showing pile axial force to be irrelevant in the reconsolidation process, while settlement is process dependent.

Book Inertial and Lateral Spreading Demands on Soil pile structure Systems in Liquefied and Laterally Spreading Ground During Earthquakes

Download or read book Inertial and Lateral Spreading Demands on Soil pile structure Systems in Liquefied and Laterally Spreading Ground During Earthquakes written by Dongdong Chang and published by . This book was released on 2007 with total page 534 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions

Download or read book Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions written by Francesco Silvestri and published by CRC Press. This book was released on 2019-07-19 with total page 8083 pages. Available in PDF, EPUB and Kindle. Book excerpt: Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions contains invited, keynote and theme lectures and regular papers presented at the 7th International Conference on Earthquake Geotechnical Engineering (Rome, Italy, 17-20 June 2019. The contributions deal with recent developments and advancements as well as case histories, field monitoring, experimental characterization, physical and analytical modelling, and applications related to the variety of environmental phenomena induced by earthquakes in soils and their effects on engineered systems interacting with them. The book is divided in the sections below: Invited papers Keynote papers Theme lectures Special Session on Large Scale Testing Special Session on Liquefact Projects Special Session on Lessons learned from recent earthquakes Special Session on the Central Italy earthquake Regular papers Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions provides a significant up-to-date collection of recent experiences and developments, and aims at engineers, geologists and seismologists, consultants, public and private contractors, local national and international authorities, and to all those involved in research and practice related to Earthquake Geotechnical Engineering.

Book Pile Response to Liquefaction induced Lateral Spread

Download or read book Pile Response to Liquefaction induced Lateral Spread written by Wolfgang Daniel Meyersohn and published by . This book was released on 1994 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Behavior of Pile Foundations in Liquefied and Laterally Spreading Ground

Download or read book Behavior of Pile Foundations in Liquefied and Laterally Spreading Ground written by Scott J. Brandenberg and published by . This book was released on 2005 with total page 712 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Seismic Design and Performance

Download or read book Seismic Design and Performance written by T.G. Sitharam and published by Springer Nature. This book was released on 2021-03-26 with total page 406 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents select papers presented at the 7th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. The papers discuss advances in the fields of soil dynamics and geotechnical earthquake engineering. Some of the themes include seismic design of deep & shallow foundations, soil structure interaction under dynamic loading, marine structures, etc. A strong emphasis is placed on connecting academic research and field practice, with many examples, case studies, best practices, and discussions on performance based design. This volume will be of interest to researchers and practicing engineers alike.

Book Seismic Design and Retrofit of Bridges

Download or read book Seismic Design and Retrofit of Bridges written by M. J. N. Priestley and published by John Wiley & Sons. This book was released on 1996-04-12 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt: Because of their structural simplicity, bridges tend to beparticularly vulnerable to damage and even collapse when subjectedto earthquakes or other forms of seismic activity. Recentearthquakes, such as the ones in Kobe, Japan, and Oakland,California, have led to a heightened awareness of seismic risk andhave revolutionized bridge design and retrofit philosophies. In Seismic Design and Retrofit of Bridges, three of the world's topauthorities on the subject have collaborated to produce the mostexhaustive reference on seismic bridge design currently available.Following a detailed examination of the seismic effects of actualearthquakes on local area bridges, the authors demonstrate designstrategies that will make these and similar structures optimallyresistant to the damaging effects of future seismicdisturbances. Relying heavily on worldwide research associated with recentquakes, Seismic Design and Retrofit of Bridges begins with anin-depth treatment of seismic design philosophy as it applies tobridges. The authors then describe the various geotechnicalconsiderations specific to bridge design, such as soil-structureinteraction and traveling wave effects. Subsequent chapters coverconceptual and actual design of various bridge superstructures, andmodeling and analysis of these structures. As the basis for their design strategies, the authors' focus is onthe widely accepted capacity design approach, in which particularlyvulnerable locations of potentially inelastic flexural deformationare identified and strengthened to accommodate a greater degree ofstress. The text illustrates how accurate application of thecapacity design philosophy to the design of new bridges results instructures that can be expected to survive most earthquakes withonly minor, repairable damage. Because the majority of today's bridges were built before thecapacity design approach was understood, the authors also devoteseveral chapters to the seismic assessment of existing bridges,with the aim of designing and implementing retrofit measures toprotect them against the damaging effects of future earthquakes.These retrofitting techniques, though not considered appropriate inthe design of new bridges, are given considerable emphasis, sincethey currently offer the best solution for the preservation ofthese vital and often historically valued thoroughfares. Practical and applications-oriented, Seismic Design and Retrofit ofBridges is enhanced with over 300 photos and line drawings toillustrate key concepts and detailed design procedures. As the onlytext currently available on the vital topic of seismic bridgedesign, it provides an indispensable reference for civil,structural, and geotechnical engineers, as well as students inrelated engineering courses. A state-of-the-art text on earthquake-proof design and retrofit ofbridges Seismic Design and Retrofit of Bridges fills the urgent need for acomprehensive and up-to-date text on seismic-ally resistant bridgedesign. The authors, all recognized leaders in the field,systematically cover all aspects of bridge design related toseismic resistance for both new and existing bridges. * A complete overview of current design philosophy for bridges,with related seismic and geotechnical considerations * Coverage of conceptual design constraints and their relationshipto current design alternatives * Modeling and analysis of bridge structures * An exhaustive look at common building materials and theirresponse to seismic activity * A hands-on approach to the capacity design process * Use of isolation and dissipation devices in bridge design * Important coverage of seismic assessment and retrofit design ofexisting bridges

Book Soil Liquefaction during Recent Large Scale Earthquakes

Download or read book Soil Liquefaction during Recent Large Scale Earthquakes written by Rolando P. Orense and published by CRC Press. This book was released on 2014-04-15 with total page 282 pages. Available in PDF, EPUB and Kindle. Book excerpt: Soil Liquefaction during Recent Large-Scale Earthquakes contains selected papers presented at the New Zealand – Japan Workshop on Soil Liquefaction during Recent Large-Scale Earthquakes (Auckland, New Zealand, 2-3 December 2013). The 2010-2011 Canterbury earthquakes in New Zealand and the 2011 off the Pacific Coast of Tohoku Earthquake in Japan have caused significant damage to many residential houses due to varying degrees of soil liquefaction over a very wide extent of urban areas unseen in past destructive earthquakes. While soil liquefaction occurred in naturally-sedimented soil formations in Christchurch, most of the areas which liquefied in Tokyo Bay area were reclaimed soil and artificial fill deposits, thus providing researchers with a wide range of soil deposits to characterize soil and site response to large-scale earthquake shaking. Although these earthquakes in New Zealand and Japan caused extensive damage to life and property, they also serve as an opportunity to understand better the response of soil and building foundations to such large-scale earthquake shaking. With the wealth of information obtained in the aftermath of both earthquakes, information-sharing and knowledge-exchange are vital in arriving at liquefaction-proof urban areas in both countries. Data regarding the observed damage to residential houses as well as the lessons learnt are essential for the rebuilding efforts in the coming years and in mitigating buildings located in regions with high liquefaction potential. As part of the MBIE-JSPS collaborative research programme, the Geomechanics Group of the University of Auckland and the Geotechnical Engineering Laboratory of the University of Tokyo co-hosted the workshop to bring together researchers to review the findings and observations from recent large-scale earthquakes related to soil liquefaction and discuss possible measures to mitigate future damage. Soil Liquefaction during Recent Large-Scale Earthquakes will be of great interest to researchers, academics, industry practitioners and other professionals involved in Earthquake Geotechnical Engineering, Foundation Engineering, Earthquake Engineering and Structural Dynamics.

Book Lateral Spreading Effects on Pile Foundations

Download or read book Lateral Spreading Effects on Pile Foundations written by Ahmed Amr Ebeido and published by . This book was released on 2019 with total page 485 pages. Available in PDF, EPUB and Kindle. Book excerpt: Current techniques for assessing the effects of liquefaction-induced lateral spreading on pile foundations are based on simplified analytical methods that potentially lead to estimates that vary within a wide range. This might lead to potential excessive design demands, with high expenses for pre-event mitigation. Conversely, underestimated design demands might lead to costly post-event damage remediation. The conducted study is directed towards enhancements to the assessment of liquefaction induced lateral spreading effects on bridge foundation systems. Current simplified analysis techniques have been only been developed recently in preliminary form. In addition, quantitative data sets from large-scale experimentation are needed concerning the response of such ground-foundation scenarios. An effort was undertaken to address the simplified method areas of applicability and potential for enhancements. Challenges in implementing the methodology are presented within a comparative scope contrasting results of a California bridge site from different studies. On this basis, insights are derived for improvement of the currently employed simplified analysis guidelines. Furthermore, large scale shake table testing was performed on pile foundation-ground systems, under conditions of liquefaction-induced lateral spreading. A total of 7 different experiments were conducted with varying heights, ground inclination, soil profiles, pile material and cross-section. The tested models were densely instrumented, including strain gauges, total pressure and excess pore-pressure sensors, accelerometers and displacement pots. In addition, data from 4 different experiments conducted in the NIED Japan shake table facility, including single piles and pile groups and varying soil profiles were utilized to provide additional insights and characteristics. In these tests, the laminar soil container was placed in a mildly-inclined configuration to allow for accumulation of the liquefaction-induced lateral deformations. Detailed instrumentation and data interpretation procedures enable measurement of the fundamental soil-pile interaction behavior. The loading mechanisms have large cyclic components that may act in-phase or out-of-phase along the pile embedded length. The conducted heavily instrumented tests resulted in a wealth of quantitative response data sets, to be used for: i) drawing insights and recommendations of practical significance based directly on the observed response, ii) calibration of simplified and more elaborate computational analysis tools, and iii) enhancement of our design guidelines and practical assessment procedures. Monotonic pushover analysis based on newly derived p-y curves in this study is found to provide useful design estimates in good agreement with the observed experimental results.