EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Beam Dynamics Studies for Heavy Ion Fusion Drivers

Download or read book Beam Dynamics Studies for Heavy Ion Fusion Drivers written by and published by . This book was released on 1999 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Beam Dynamics Studies of the Heavy Ion Fusion Accelerator Injector

Download or read book Beam Dynamics Studies of the Heavy Ion Fusion Accelerator Injector written by and published by . This book was released on 1995 with total page 3 pages. Available in PDF, EPUB and Kindle. Book excerpt: A driver-scale injector for the Heavy Ion Fusion Accelerator project has been built at LBL. This machine has exceeded the design goals of high voltage (> 2 MV), high current (> 0.8 A of K) and low normalized emittance (

Book Beam Dynamics in Heavy Ion Fusion

Download or read book Beam Dynamics in Heavy Ion Fusion written by and published by . This book was released on 1995 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: A standard design for heavy ion fusion drivers under study in the US is an induction linac with electrostatic focusing at low energy and magnetic focusing at higher energy. The need to focus the intense beam to a few-millimeter size spot at the deuterium-tritium target establishes the emittance budget for the accelerator. Economic and technological considerations favor a larger number of beams in the low-energy, electrostatic-focusing section than in the high-energy, magnetic-focusing section. Combining four beams into a single focusing channel is a viable option, depending on the growth in emittance due to the combining process. Several significant beam dynamics issues that are, or have been, under active study are discussed: large space charge and image forces, beam wall clearances, halos, alignment, longitudinal instability, and bunch length control.

Book Longitudinal Beam Dynamics for Heavy Ion Fusion Using WARPrz

Download or read book Longitudinal Beam Dynamics for Heavy Ion Fusion Using WARPrz written by and published by . This book was released on 1993 with total page 10 pages. Available in PDF, EPUB and Kindle. Book excerpt: WARPrz is a 2.5 dimensional, cylindrically symmetric, electrostatic, particle-in-cell code. It is part of the WARP family of codes which has been developed to study heavy ion fusion driver issues. WARPrz is being used to study the longitudinal dynamics of heavy ion beams including a longitudinal instability that is driven by the impedance of the LINAC accelerating modules. This instability is of concern because it can enhance longitudinal momentum spread; chromatic abhoration in the lens system restricts the amount of momentum spread allowed in the beam in the final focusing system. The impedance of the modules is modeled by a continuum of resistors and capacitors in parallel in WARPrz. We discuss simulations of this instability including the effect of finite temperature and reflection of perturbations off the beam ends. We also discuss intermittency of axial confining fields (''ears'' fields) as a seed for this instability.

Book Transverse Beam Dynamics Studies of a Heavy Ion Induction Linac

Download or read book Transverse Beam Dynamics Studies of a Heavy Ion Induction Linac written by and published by . This book was released on 1990 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: The multiple beam induction linac experiment (MBE-4) was built to study the accelerator physics of the low energy, electrostatically focussed end of a driver for heavy ion inertial confinement fusion. In this machine four beams of Cs ions are accelerated through 24 common induction gaps while being focussed in separate AG focussing channels. Each channel consists of a syncopated FODO lattice of 30 periods. We report results of the most recent studies of the transverse beam dynamics of a single drifting (180 keV) beam in this machine. The dependence of the emittance on the zero-current phase advance shows systematic variations which may be understood in the light of previous theoretical work on this topic. This result, unique to the beam parameters of a linac for heavy ion fusion, will be discussed in the context of its implications for a driver design. In addition we will discuss recent measurements of the motion of the beam centroid through the linac. These measurements, coupled with simulations, have proven to be a powerful tool in determining the presence of misalignment errors in the lattice of the accelerator. 6 refs., 3 figs.

Book Issues and Opportunities

Download or read book Issues and Opportunities written by and published by . This book was released on 1999 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: UCRL- JC- 134975 PREPRINT code offering 3- D, axisymmetric, and ''transverse slice'' (steady flow) geometries, with a hierarchy of models for the ''lattice'' of focusing, bending, and accelerating elements. Interactive and script- driven code steering is afforded through an interpreter interface. The code runs with good parallel scaling on the T3E. Detailed simulations of machine segments and of complete small experiments, as well as simplified full- system runs, have been carried out, partially benchmarking the code. A magnetoinductive model, with module impedance and multi- beam effects, is under study. experiments, including an injector scalable to multi- beam arrays, a high- current beam transport and acceleration experiment, and a scaled final- focusing experiment. These ''phase I'' projects are laying the groundwork for the next major step in HIF development, the Integrated Research Experiment (IRE). Simulations aimed directly at the IRE must enable us to: design a facility with maximum power on target at minimal cost; set requirements for hardware tolerances, beam steering, etc.; and evaluate proposed chamber propagation modes. Finally, simulations must enable us to study all issues which arise in the context of a fusion driver, and must facilitate the assessment of driver options. In all of this, maximum advantage must be taken of emerging terascale computer architectures, requiring an aggressive code development effort. An organizing principle should be pursuit of the goal of integrated and detailed source- to- target simulation. methods for analysis of the beam dynamics in the various machine concepts, using moment- based methods for purposes of design, waveform synthesis, steering algorithm synthesis, etc. Three classes of discrete- particle models should be coupled: (1) electrostatic/ magnetoinductive PIC simulations should track the beams from the source through the final- focusing optics, passing details of the time- dependent distribution function to (2) electromagnetic or magnetoinductive PIC or hybrid PIG/ fluid simulations in the fusion chamber (which would finally pass their particle trajectory information to the radiation- hydrodynamics codes used for target design); in parallel, (3) detailed PIC, delta- f, core/ test- particle, and perhaps continuum Vlasov codes should be used to study individual sections of the driver and chamber very carefully; consistency may be assured by linking data from the PIC sequence, and knowledge gained may feed back into that sequence.

Book Overview of Theory and Modeling in the Heavy Ion Fusion Virtual National Laboratory

Download or read book Overview of Theory and Modeling in the Heavy Ion Fusion Virtual National Laboratory written by and published by . This book was released on 2002 with total page 18 pages. Available in PDF, EPUB and Kindle. Book excerpt: This paper presents analytical and simulation studies of intense heavy ion beam propagation, including the injection, acceleration, transport and compression phases, and beam transport and focusing in background plasma in the target chamber. Analytical theory and simulations that support the High Current Experiment (HCX), the Neutralized Transport Experiment (NTX), and the advanced injector development program, are being used to provide a basic understanding of the nonlinear beam dynamics and collective processes, and to develop design concepts for the next-step Integrated Beam Experiment (IBX), an Integrated Research Experiment (IRE), and a heavy ion fusion driver. 3-D nonlinear perturbative simulations have been applied to collective instabilities driven by beam temperature anisotropy, and to two-stream interactions between the beam ions and any unwanted background electrons; 3-D particle-in-cell simulations of the 2 MV Electrostatic Quadrupole (ESQ) injector have clarified the influence of pulse rise time; analytical studies and simulations of the drift compression process have been carried out; syntheses of a 4-D particle distribution function from phase-space projections have been developed; and studies of the generation and trapping of stray electrons in the beam self fields have been performed. Particle-in-cell simulations, involving pre-formed plasma, are being used to study the influence of charge and current neutralization on the focusing of the ion beam in NTX and in a fusion chamber.

Book Simulations of Longitudinal Beam Dynamics of Space charge Dominated Beams for Heavy Ion Fusion

Download or read book Simulations of Longitudinal Beam Dynamics of Space charge Dominated Beams for Heavy Ion Fusion written by Debra Ann Callahan Miller and published by . This book was released on 1994 with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Heavy Ion Fusion Science

Download or read book Heavy Ion Fusion Science written by R. C. Davidson and published by . This book was released on 2006 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Over the past two years noteworthy experimental and theoretical progress has been made towards the top-level scientific question for the U.S. program in Heavy Ion Fusion Science and High Energy Density Physics: ''How can heavy ion beams be compressed to the high intensity required to create high energy density matter and fusion conditions''? [1]. New results in transverse and longitudinal beam compression, beam-target interaction, high-brightness transport, beam production, as well as a new scheme in beam acceleration will be reported. Longitudinal and Transverse Beam Compression: The Neutralized Transport Experiment (NTX) demonstrated transverse beam density enhancement by a factor greater than 100 when an otherwise space-charge dominated ion beam was neutralized by a plasma source [2]. This experiment was followed by the Neutralized Drift Compression Experiment (NDCX) in which an ion beam was longitudinally compressed by a factor of 50 [3]. This was accomplished by applying a linear head-to-tail velocity ''tilt'' to the beam, and then allowing the beam to drift through a meter-long neutralizing plasma. In both the transverse and longitudinal experiments, extensive 3-D simulations, using LSP, were carried out, and the agreement with experiments was excellent [4]. A three-dimensional kinetic model for longitudinal compression was developed, and it was shown that the Vlasov equation possesses a class of exact solutions for the problem [5]. Beam-Target Interaction: We have also made significant progress in identifying the unique role ion beams can play in heating material to warm dense matter (WDM) conditions. We have identified promising accelerator, beam, and target configurations, as well as new experiments on material properties. It is shown that the target temperature uniformity can be maximized if the ion energy at target corresponds to the maximum in the energy loss rate dE/dX [6]. Ions of moderate energy (a few to tens of MeV) may be used. The energy must be deposited in times much shorter than the hydrodynamic expansion time (ns for metallic foams at 0.01 to 0.1 times solid density). Hydrodynamic simulations [7] have confirmed that uniform conditions with temperature variations of less than a few per cent can be achieved. High-Brightness Transport: Unwanted electrons can lead to deleterious effects for high-brightness ion beam transport. We are studying electron accumulation in quadrupole and solenoid beam transport systems. Electrons can originate from background gas ionization, from beam-tubes struck by ions near grazing incidence, and from end-walls struck by ions near normal incidence [8]. In parallel with the experimental campaign, we have developed and implemented in WARP 3D a new approach to large time-step advancement of electron orbits, as well as a comprehensive suite of models for electrons, gas, and wall interactions [9]. If sufficient electrons are accumulated within the beam, severe distortion of the beam phase space can result. Simulations of this effect have reproduced the key features observed in the experiments. Beam Production: The merging-beamlet injector experiment recently completed demonstrates the feasibility of a compact, high-current injector for heavy ion fusion drivers. In our experiment, 119 argon ion beamlets at 400 keV beam energy were merged into an electrostatic quadrupole channel to form a single beam of 70 mA. The measured unnormalized transverse emittance (phase space area) of 200-250 mm-mrad for the merged beam met fusion driver requirement. These measurements are in good agreement with our particle-in-cell simulations using WARP3D [10]. We have also completed the physics design of a short-pulse injector suitable for WDM studies. Beam Acceleration: A new concept for acceleration, the Pulse Line Ion Accelerator PLIA [11], offers the potential of a very low cost accelerator for WDM studies. It is based on a traveling wave structure, using a simple geometry with a helical conductor. We have obtained experimental verification of the predicted PLIA beam dynamics. Measured energy gain, longitudinal phase space, and beam bunching are in good agreement with WARP3D simulations. Computational Models and Simulator Experiments: The pioneering merger of Adaptive Mesh Refinement and particle-in-cell methods [12] underlies much of the recent success of WARP3D. BEST, the Beam Equilibrium Stability and Transport code was optimized for massively parallel computers and applied to studies of the collective effects of 3D bunched beams [13] and the temperature-anisotropy instability [14]. Space-charge-dominated beam physics experiments relevant to long-path accelerators were carried out on the recently completed University of Maryland Electron Ring, and on the Paul Trap Simulator Experiment at PPPL.

Book Heavy Ion Fusion Accelerator Research  1992

Download or read book Heavy Ion Fusion Accelerator Research 1992 written by and published by . This book was released on 1993 with total page 16 pages. Available in PDF, EPUB and Kindle. Book excerpt: The National Energy Strategy calls for a demonstration IFE power plant by the year 2025. The cornerstone of the plan to meet this ambitious goal is research and development for heavy-ion driver technology. A series of successes indicates that the technology being studied by the HIFAR Group -- the induction accelerator -- is a prime candidate for further technology development toward this long-range goal. The HIFAR program addresses the generation of high-power, high-brightness beams of heavy ions; the understanding of the scaling laws that apply in this hitherto little-explored physics regime; and the validation of new, potentially more economical accelerator strategies. Key specific elements to be addressed include: fundamental physical limits of transverse and longitudinal beam quality; development of induction modules for accelerators, along with multiple-beam hardware, at reasonable cost; acceleration of multiple beams, merging of the beams, and amplification of current without significant dilution of beam quality; final bunching, transport, and focusing onto a small target. In 1992, the HIFAR Program was concerned principally with the next step toward a driver: the design of ILSE, the Induction Linac Systems Experiments. ILSE will address most of the remaining beam-control and beam-manipulation issues at partial driver scale. A few parameters -- most importantly, the line charge density and consequently the size of the ILSE beams -- will be at full driver scale. A theory group closely integrated with the experimental groups continues supporting present-day work and looking ahead toward larger experiments and the eventual driver. Highlights of this long-range, driver-oriented research included continued investigations of longitudinal instability and some new insights into scaled experiments with which the authors might examine hard-to-calculate beam-dynamics phenomena.

Book Simulations of Longitudinal Beam Dynamics of Space charge Dominated Beams for Heavy Ion Fusion

Download or read book Simulations of Longitudinal Beam Dynamics of Space charge Dominated Beams for Heavy Ion Fusion written by and published by . This book was released on 1994 with total page 114 pages. Available in PDF, EPUB and Kindle. Book excerpt: The longitudinal instability has potentially disastrous effects on the ion beams used for heavy ion driven inertial confinement fusion. This instability is a {open_quotes}resistive wall{close_quotes} instability with the impedance coining from the induction modules in the accelerator used as a driver. This instability can greatly amplify perturbations launched from the beam head and can prevent focusing of the beam onto the small spot necessary for fusion. This instability has been studied using the WARPrz particle-in-cell code. WARPrz is a 2 1/2 dimensional electrostatic axisymmetric code. This code includes a model for the impedance of the induction modules. Simulations with resistances similar to that expected in a driver show moderate amounts of growth from the instability as a perturbation travels from beam head to tail as predicted by cold beam fluid theory. The perturbation reflects off the beam tail and decays as it travels toward the beam head. Nonlinear effects cause the perturbation to steepen during reflection. Including the capacitive component of the, module impedance. has a partially stabilizing effect on the longitudinal instability. This reduction in the growth rate is seen in both cold beam fluid theory and in simulations with WARPrz. Instability growth rates for warm beams measured from WARPrz are lower than cold beam fluid theory predicts. Longitudinal thermal spread cannot account for this decrease in the growth rate. A mechanism for coupling the transverse thermal spread to decay of the longitudinal waves is presented. The longitudinal instability is no longer a threat to the heavy ion fusion program. The simulations in this thesis have shown that the growth rate for this instability will not be as large as earlier calculations predicted.

Book Parametric Study of the Current Limit Within a Single Driver scale Transport Beam Line of an Induction Linac for Heavy Ion Fusion

Download or read book Parametric Study of the Current Limit Within a Single Driver scale Transport Beam Line of an Induction Linac for Heavy Ion Fusion written by Lionel Robert Prost and published by . This book was released on 2004 with total page 628 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Beam Simulations for IRE and Driver Status and Strategy

Download or read book Beam Simulations for IRE and Driver Status and Strategy written by and published by . This book was released on 2000 with total page 5 pages. Available in PDF, EPUB and Kindle. Book excerpt: The methods and codes employed in the U.S. Heavy Ion Fusion program to simulate the beams in an Integrated Research Experiments (IRE) facility and a fusion driver are presented in overview. A new family of models incorporating accelerating module impedance, multi-beam, and self-magnetic effects is described, and initial WARP3d particle simulations of beams using these models are presented. Finally, plans for streamlining the machine-design simulation sequence, and for simulating beam dynamics from the source to the target in a consistent and comprehensive manner, are described.

Book Scherer Theodor  1816 1885

Download or read book Scherer Theodor 1816 1885 written by and published by . This book was released on 1836 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Theodor Scherer (1816-1885), Solothurner Politiker und Journalist.

Book Heavy ion Fusion Accelerator Research  1989

Download or read book Heavy ion Fusion Accelerator Research 1989 written by and published by . This book was released on 1990 with total page 13 pages. Available in PDF, EPUB and Kindle. Book excerpt: This report discusses the following topics on heavy-ion fusion accelerator research: MBE-4: the induction-linac approach; transverse beam dynamics and current amplification; scaling up the results; through ILSE to a driver; ion-source and injector development; and accelerator component research and development.

Book The Heavy Ion Fusion Program in the U S A

Download or read book The Heavy Ion Fusion Program in the U S A written by and published by . This book was released on 2000 with total page 13 pages. Available in PDF, EPUB and Kindle. Book excerpt: Inertial fusion energy research has enjoyed increased interest and funding. This has allowed expanded programs in target design, target fabrication, fusion chamber research, target injection and tracking, and accelerator research. The target design effort examines ways to minimize the beam power and energy and increase the allowable focal spot size while preserving target gain. Chamber research for heavy ion fusion emphasizes the use of thick liquid walls to serve as the coolant, breed tritium, and protect the structural wall from neutrons, photons, and other target products. Several small facilities are now operating to model fluid chamber dynamics. A facility to study target injection and tracking has been built and a second facility is being designed. Improved economics is an important goal of the accelerator research. The accelerator research is also directed toward the design of an Integrated Research Experiment (IRE). The IRE is being designed to accelerate ions to>100 MeV, enabling experiments in beam dynamics, focusing, and target physics. Activities leading to the IRE include ion source development and a High Current Experiment (HCX) designed to transport and accelerate a single beam of ions with a beam current of approximately 1 A, the initial current required for each beam of a fusion driver. In terms of theory, the program is developing a source-to-target numerical simulation capability. The goal of the entire program is to enable an informed decision about the promise of heavy ion fusion in about a decade.

Book Heavy ion Fusion Driver Research at Berkeley and Livermore

Download or read book Heavy ion Fusion Driver Research at Berkeley and Livermore written by and published by . This book was released on 1996 with total page 10 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Department of Energy is restructuring the U.S. fusion program to place a greater emphasis on science. As a result, we will not build the ILSE or Elise heavy ion fusion (HIF) facilities described in 1992 and 1994 conferences. Instead we are performing smaller experiments to address important scientific questions. Accelerator technology for HIF is similar to that for other applications such as high energy physics and nuclear physics. The beam physics, however, differs from the physics encountered in most accelerators, where the pressure arising from the beam temperature (emittance) is the dominant factor determining beam size and focusing system design. In HIF, space charge is the dominant feature, leading us into a parameter regime where.the beam plasma frequency becomes comparable to the betatron frequency. Our experiments address the physics of non-neutral plasmas in this novel regime. Because the beam plasma frequency is low, Particle-in-cell (PIC) simulations provide a good description of most of our experiments. Accelerators for HIF consist of several subsystems: ion sources, injectors, matching sections, combiners, acceleration sections with electric and magnetic focusing, beam compression and bending sections, and a system to focus the beams onto the target. We are currently assembling or performing experiments to address the physics of all these subsystems. This paper will discuss experiments in injection, combining, and bending.