Download or read book Bayesian Risk Management written by Matt Sekerke and published by John Wiley & Sons. This book was released on 2015-09-15 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: A risk measurement and management framework that takes model risk seriously Most financial risk models assume the future will look like the past, but effective risk management depends on identifying fundamental changes in the marketplace as they occur. Bayesian Risk Management details a more flexible approach to risk management, and provides tools to measure financial risk in a dynamic market environment. This book opens discussion about uncertainty in model parameters, model specifications, and model-driven forecasts in a way that standard statistical risk measurement does not. And unlike current machine learning-based methods, the framework presented here allows you to measure risk in a fully-Bayesian setting without losing the structure afforded by parametric risk and asset-pricing models. Recognize the assumptions embodied in classical statistics Quantify model risk along multiple dimensions without backtesting Model time series without assuming stationarity Estimate state-space time series models online with simulation methods Uncover uncertainty in workhorse risk and asset-pricing models Embed Bayesian thinking about risk within a complex organization Ignoring uncertainty in risk modeling creates an illusion of mastery and fosters erroneous decision-making. Firms who ignore the many dimensions of model risk measure too little risk, and end up taking on too much. Bayesian Risk Management provides a roadmap to better risk management through more circumspect measurement, with comprehensive treatment of model uncertainty.
Download or read book Risk Assessment and Decision Analysis with Bayesian Networks written by Norman Fenton and published by CRC Press. This book was released on 2012-11-07 with total page 527 pages. Available in PDF, EPUB and Kindle. Book excerpt: Although many Bayesian Network (BN) applications are now in everyday use, BNs have not yet achieved mainstream penetration. Focusing on practical real-world problem solving and model building, as opposed to algorithms and theory, Risk Assessment and Decision Analysis with Bayesian Networks explains how to incorporate knowledge with data to develop and use (Bayesian) causal models of risk that provide powerful insights and better decision making. Provides all tools necessary to build and run realistic Bayesian network models Supplies extensive example models based on real risk assessment problems in a wide range of application domains provided; for example, finance, safety, systems reliability, law, and more Introduces all necessary mathematics, probability, and statistics as needed The book first establishes the basics of probability, risk, and building and using BN models, then goes into the detailed applications. The underlying BN algorithms appear in appendices rather than the main text since there is no need to understand them to build and use BN models. Keeping the body of the text free of intimidating mathematics, the book provides pragmatic advice about model building to ensure models are built efficiently. A dedicated website, www.BayesianRisk.com, contains executable versions of all of the models described, exercises and worked solutions for all chapters, PowerPoint slides, numerous other resources, and a free downloadable copy of the AgenaRisk software.
Download or read book Risk Assessment and Decision Analysis with Bayesian Networks written by Norman Fenton and published by CRC Press. This book was released on 2018-09-03 with total page 661 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the first edition of this book published, Bayesian networks have become even more important for applications in a vast array of fields. This second edition includes new material on influence diagrams, learning from data, value of information, cybersecurity, debunking bad statistics, and much more. Focusing on practical real-world problem-solving and model building, as opposed to algorithms and theory, it explains how to incorporate knowledge with data to develop and use (Bayesian) causal models of risk that provide more powerful insights and better decision making than is possible from purely data-driven solutions. Features Provides all tools necessary to build and run realistic Bayesian network models Supplies extensive example models based on real risk assessment problems in a wide range of application domains provided; for example, finance, safety, systems reliability, law, forensics, cybersecurity and more Introduces all necessary mathematics, probability, and statistics as needed Establishes the basics of probability, risk, and building and using Bayesian network models, before going into the detailed applications A dedicated website contains exercises and worked solutions for all chapters along with numerous other resources. The AgenaRisk software contains a model library with executable versions of all of the models in the book. Lecture slides are freely available to accredited academic teachers adopting the book on their course.
Download or read book Financial Risk Management with Bayesian Estimation of GARCH Models written by David Ardia and published by Springer Science & Business Media. This book was released on 2008-05-08 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents in detail methodologies for the Bayesian estimation of sing- regime and regime-switching GARCH models. These models are widespread and essential tools in n ancial econometrics and have, until recently, mainly been estimated using the classical Maximum Likelihood technique. As this study aims to demonstrate, the Bayesian approach o ers an attractive alternative which enables small sample results, robust estimation, model discrimination and probabilistic statements on nonlinear functions of the model parameters. The author is indebted to numerous individuals for help in the preparation of this study. Primarily, I owe a great debt to Prof. Dr. Philippe J. Deschamps who inspired me to study Bayesian econometrics, suggested the subject, guided me under his supervision and encouraged my research. I would also like to thank Prof. Dr. Martin Wallmeier and my colleagues of the Department of Quantitative Economics, in particular Michael Beer, Roberto Cerratti and Gilles Kaltenrieder, for their useful comments and discussions. I am very indebted to my friends Carlos Ord as Criado, Julien A. Straubhaar, J er ^ ome Ph. A. Taillard and Mathieu Vuilleumier, for their support in the elds of economics, mathematics and statistics. Thanks also to my friend Kevin Barnes who helped with my English in this work. Finally, I am greatly indebted to my parents and grandparents for their support and encouragement while I was struggling with the writing of this thesis.
Download or read book Coherent Stress Testing written by Riccardo Rebonato and published by John Wiley & Sons. This book was released on 2010-06-10 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: In Coherent Stress Testing: A Bayesian Approach, industry expert Riccardo Rebonato presents a groundbreaking new approach to this important but often undervalued part of the risk management toolkit. Based on the author's extensive work, research and presentations in the area, the book fills a gap in quantitative risk management by introducing a new and very intuitively appealing approach to stress testing based on expert judgement and Bayesian networks. It constitutes a radical departure from the traditional statistical methodologies based on Economic Capital or Extreme-Value-Theory approaches. The book is split into four parts. Part I looks at stress testing and at its role in modern risk management. It discusses the distinctions between risk and uncertainty, the different types of probability that are used in risk management today and for which tasks they are best used. Stress testing is positioned as a bridge between the statistical areas where VaR can be effective and the domain of total Keynesian uncertainty. Part II lays down the quantitative foundations for the concepts described in the rest of the book. Part III takes readers through the application of the tools discussed in part II, and introduces two different systematic approaches to obtaining a coherent stress testing output that can satisfy the needs of industry users and regulators. In part IV the author addresses more practical questions such as embedding the suggestions of the book into a viable governance structure.
Download or read book Portfolio Management under Stress written by Riccardo Rebonato and published by Cambridge University Press. This book was released on 2013 with total page 519 pages. Available in PDF, EPUB and Kindle. Book excerpt: A rigorous presentation of a novel methodology for asset allocation in financial portfolios under conditions of market distress.
Download or read book Modelling Operational Risk Using Bayesian Inference written by Pavel V. Shevchenko and published by Springer Science & Business Media. This book was released on 2011-01-19 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: The management of operational risk in the banking industry has undergone explosive changes over the last decade due to substantial changes in the operational environment. Globalization, deregulation, the use of complex financial products, and changes in information technology have resulted in exposure to new risks which are very different from market and credit risks. In response, the Basel Committee on Banking Supervision has developed a new regulatory framework for capital measurement and standards for the banking sector. This has formally defined operational risk and introduced corresponding capital requirements. Many banks are undertaking quantitative modelling of operational risk using the Loss Distribution Approach (LDA) based on statistical quantification of the frequency and severity of operational risk losses. There are a number of unresolved methodological challenges in the LDA implementation. Overall, the area of quantitative operational risk is very new and different methods are under hot debate. This book is devoted to quantitative issues in LDA. In particular, the use of Bayesian inference is the main focus. Though it is very new in this area, the Bayesian approach is well suited for modelling operational risk, as it allows for a consistent and convenient statistical framework for quantifying the uncertainties involved. It also allows for the combination of expert opinion with historical internal and external data in estimation procedures. These are critical, especially for low-frequency/high-impact operational risks. This book is aimed at practitioners in risk management, academic researchers in financial mathematics, banking industry regulators and advanced graduate students in the area. It is a must-read for anyone who works, teaches or does research in the area of financial risk.
Download or read book Bayesian Risk Management written by Matt Sekerke and published by John Wiley & Sons. This book was released on 2015-08-19 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: A risk measurement and management framework that takes model risk seriously Most financial risk models assume the future will look like the past, but effective risk management depends on identifying fundamental changes in the marketplace as they occur. Bayesian Risk Management details a more flexible approach to risk management, and provides tools to measure financial risk in a dynamic market environment. This book opens discussion about uncertainty in model parameters, model specifications, and model-driven forecasts in a way that standard statistical risk measurement does not. And unlike current machine learning-based methods, the framework presented here allows you to measure risk in a fully-Bayesian setting without losing the structure afforded by parametric risk and asset-pricing models. Recognize the assumptions embodied in classical statistics Quantify model risk along multiple dimensions without backtesting Model time series without assuming stationarity Estimate state-space time series models online with simulation methods Uncover uncertainty in workhorse risk and asset-pricing models Embed Bayesian thinking about risk within a complex organization Ignoring uncertainty in risk modeling creates an illusion of mastery and fosters erroneous decision-making. Firms who ignore the many dimensions of model risk measure too little risk, and end up taking on too much. Bayesian Risk Management provides a roadmap to better risk management through more circumspect measurement, with comprehensive treatment of model uncertainty.
Download or read book Bayesian Methods in Finance written by Svetlozar T. Rachev and published by John Wiley & Sons. This book was released on 2008-02-13 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian Methods in Finance provides a detailed overview of the theory of Bayesian methods and explains their real-world applications to financial modeling. While the principles and concepts explained throughout the book can be used in financial modeling and decision making in general, the authors focus on portfolio management and market risk management—since these are the areas in finance where Bayesian methods have had the greatest penetration to date.
Download or read book Reliability and Risk written by Nozer D. Singpurwalla and published by John Wiley & Sons. This book was released on 2006-08-14 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: We all like to know how reliable and how risky certain situations are, and our increasing reliance on technology has led to the need for more precise assessments than ever before. Such precision has resulted in efforts both to sharpen the notions of risk and reliability, and to quantify them. Quantification is required for normative decision-making, especially decisions pertaining to our safety and wellbeing. Increasingly in recent years Bayesian methods have become key to such quantifications. Reliability and Risk provides a comprehensive overview of the mathematical and statistical aspects of risk and reliability analysis, from a Bayesian perspective. This book sets out to change the way in which we think about reliability and survival analysis by casting them in the broader context of decision-making. This is achieved by: Providing a broad coverage of the diverse aspects of reliability, including: multivariate failure models, dynamic reliability, event history analysis, non-parametric Bayes, competing risks, co-operative and competing systems, and signature analysis. Covering the essentials of Bayesian statistics and exchangeability, enabling readers who are unfamiliar with Bayesian inference to benefit from the book. Introducing the notion of “composite reliability”, or the collective reliability of a population of items. Discussing the relationship between notions of reliability and survival analysis and econometrics and financial risk. Reliability and Risk can most profitably be used by practitioners and research workers in reliability and survivability as a source of information, reference, and open problems. It can also form the basis of a graduate level course in reliability and risk analysis for students in statistics, biostatistics, engineering (industrial, nuclear, systems), operations research, and other mathematically oriented scientists, wherein the instructor could supplement the material with examples and problems.
Download or read book Credit Risk Analytics written by Bart Baesens and published by John Wiley & Sons. This book was released on 2016-10-03 with total page 517 pages. Available in PDF, EPUB and Kindle. Book excerpt: The long-awaited, comprehensive guide to practical credit risk modeling Credit Risk Analytics provides a targeted training guide for risk managers looking to efficiently build or validate in-house models for credit risk management. Combining theory with practice, this book walks you through the fundamentals of credit risk management and shows you how to implement these concepts using the SAS credit risk management program, with helpful code provided. Coverage includes data analysis and preprocessing, credit scoring; PD and LGD estimation and forecasting, low default portfolios, correlation modeling and estimation, validation, implementation of prudential regulation, stress testing of existing modeling concepts, and more, to provide a one-stop tutorial and reference for credit risk analytics. The companion website offers examples of both real and simulated credit portfolio data to help you more easily implement the concepts discussed, and the expert author team provides practical insight on this real-world intersection of finance, statistics, and analytics. SAS is the preferred software for credit risk modeling due to its functionality and ability to process large amounts of data. This book shows you how to exploit the capabilities of this high-powered package to create clean, accurate credit risk management models. Understand the general concepts of credit risk management Validate and stress-test existing models Access working examples based on both real and simulated data Learn useful code for implementing and validating models in SAS Despite the high demand for in-house models, there is little comprehensive training available; practitioners are left to comb through piece-meal resources, executive training courses, and consultancies to cobble together the information they need. This book ends the search by providing a comprehensive, focused resource backed by expert guidance. Credit Risk Analytics is the reference every risk manager needs to streamline the modeling process.
Download or read book Foundations of Risk Analysis written by Terje Aven and published by John Wiley & Sons. This book was released on 2004-01-09 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: Everyday we face decisions that carry an element of risk and uncertainty. The ability to analyse, communicate and control the level of risk entailed by these decisions remains one of the most pressing challenges to the analyst, scientist and manager. This book presents the foundational issues in risk analysis ? expressing risk, understanding what risk means, building risk models, addressing uncertainty, and applying probability models to real problems. The principal aim of the book is to give the reader the knowledge and basic thinking they require to approach risk and uncertainty to support decision making. Presents a statistical framework for dealing with risk and uncertainty. Includes detailed coverage of building and applying risk models and methods. Offers new perspectives on risk, risk assessment and the use of parametric probability models. Highlights a number of applications from business and industry. Adopts a conceptual approach based on elementary probability calculus and statistical theory. Foundations of Risk Analysis provides a framework for understanding, conducting and using risk analysis suitable for advanced undergraduates, graduates, analysts and researchers from statistics, engineering, finance, medicine and the physical sciences, as well as for managers facing decision making problems involving risk and uncertainty.
Download or read book Bayesian Decision Analysis written by Jim Q. Smith and published by Cambridge University Press. This book was released on 2010-09-23 with total page 349 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian decision analysis supports principled decision making in complex domains. This textbook takes the reader from a formal analysis of simple decision problems to a careful analysis of the sometimes very complex and data rich structures confronted by practitioners. The book contains basic material on subjective probability theory and multi-attribute utility theory, event and decision trees, Bayesian networks, influence diagrams and causal Bayesian networks. The author demonstrates when and how the theory can be successfully applied to a given decision problem, how data can be sampled and expert judgements elicited to support this analysis, and when and how an effective Bayesian decision analysis can be implemented. Evolving from a third-year undergraduate course taught by the author over many years, all of the material in this book will be accessible to a student who has completed introductory courses in probability and mathematical statistics.
Download or read book Understanding and Managing Risks in Large Engineering Projects written by Donald R Lessard and published by Legare Street Press. This book was released on 2023-07-18 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book addresses the challenges of managing risk in large-scale engineering projects such as infrastructure development, aerospace systems, and defense programs. It provides a framework for identifying, assessing, and managing risks, and includes case studies and practical guidance for project managers and executives. This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work is in the "public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Download or read book Plight of the Fortune Tellers written by Riccardo Rebonato and published by Princeton University Press. This book was released on 2007-09-17 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: Today's top financial-risk professionals have come to rely on ever-more sophisticated mathematics in their attempts to come to grips with financial risk. But this excessive reliance on quantitative precision is misleading--and it puts us all at risk. This is the case that Riccardo Rebonato makes in Plight of the Fortune Tellers--and coming from someone who is both an experienced market professional and an academic, this heresy is worth listening to. Rebonato forcefully argues that we must restore genuine decision making to our financial planning, and he shows us how to do it using probability, experimental psychology, and decision theory. This is the only way to effectively manage financial risk in a manner congruent with how human beings actually react to chance. Rebonato challenges us to rethink the standard wisdom about probability in financial-risk management. Risk managers have become obsessed with measuring risk and believe that these quantitative results by themselves can guide sound financial choices--but they can't. In this book, Rebonato offers a radical yet surprisingly commonsense solution, one that seeks to remind us that managing risk comes down to real people making decisions under uncertainty. Plight of the Fortune Tellers is not only a book for the decision makers of Wall Street, it's a must-read for anyone concerned about how today's financial markets are run. The stakes have never been higher--can you risk it?
Download or read book Oil and Gas Processing Equipment written by G. Unnikrishnan and published by CRC Press. This book was released on 2020-09-14 with total page 153 pages. Available in PDF, EPUB and Kindle. Book excerpt: Oil and gas industries apply several techniques for assessing and mitigating the risks that are inherent in its operations. In this context, the application of Bayesian Networks (BNs) to risk assessment offers a different probabilistic version of causal reasoning. Introducing probabilistic nature of hazards, conditional probability and Bayesian thinking, it discusses how cause and effect of process hazards can be modelled using BNs and development of large BNs from basic building blocks. Focus is on development of BNs for typical equipment in industry including accident case studies and its usage along with other conventional risk assessment methods. Aimed at professionals in oil and gas industry, safety engineering, risk assessment, this book Brings together basics of Bayesian theory, Bayesian Networks and applications of the same to process safety hazards and risk assessment in the oil and gas industry Presents sequence of steps for setting up the model, populating the model with data and simulating the model for practical cases in a systematic manner Includes a comprehensive list on sources of failure data and tips on modelling and simulation of large and complex networks Presents modelling and simulation of loss of containment of actual equipment in oil and gas industry such as Separator, Storage tanks, Pipeline, Compressor and risk assessments Discusses case studies to demonstrate the practicability of use of Bayesian Network in routine risk assessments
Download or read book Bayesian Networks written by Olivier Pourret and published by John Wiley & Sons. This book was released on 2008-04-30 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian Networks, the result of the convergence of artificial intelligence with statistics, are growing in popularity. Their versatility and modelling power is now employed across a variety of fields for the purposes of analysis, simulation, prediction and diagnosis. This book provides a general introduction to Bayesian networks, defining and illustrating the basic concepts with pedagogical examples and twenty real-life case studies drawn from a range of fields including medicine, computing, natural sciences and engineering. Designed to help analysts, engineers, scientists and professionals taking part in complex decision processes to successfully implement Bayesian networks, this book equips readers with proven methods to generate, calibrate, evaluate and validate Bayesian networks. The book: Provides the tools to overcome common practical challenges such as the treatment of missing input data, interaction with experts and decision makers, determination of the optimal granularity and size of the model. Highlights the strengths of Bayesian networks whilst also presenting a discussion of their limitations. Compares Bayesian networks with other modelling techniques such as neural networks, fuzzy logic and fault trees. Describes, for ease of comparison, the main features of the major Bayesian network software packages: Netica, Hugin, Elvira and Discoverer, from the point of view of the user. Offers a historical perspective on the subject and analyses future directions for research. Written by leading experts with practical experience of applying Bayesian networks in finance, banking, medicine, robotics, civil engineering, geology, geography, genetics, forensic science, ecology, and industry, the book has much to offer both practitioners and researchers involved in statistical analysis or modelling in any of these fields.