EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Bayesian Nonparametric Data Analysis

Download or read book Bayesian Nonparametric Data Analysis written by Peter Müller and published by Springer. This book was released on 2015-06-17 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reviews nonparametric Bayesian methods and models that have proven useful in the context of data analysis. Rather than providing an encyclopedic review of probability models, the book’s structure follows a data analysis perspective. As such, the chapters are organized by traditional data analysis problems. In selecting specific nonparametric models, simpler and more traditional models are favored over specialized ones. The discussed methods are illustrated with a wealth of examples, including applications ranging from stylized examples to case studies from recent literature. The book also includes an extensive discussion of computational methods and details on their implementation. R code for many examples is included in online software pages.

Book Bayesian Nonparametrics

    Book Details:
  • Author : Nils Lid Hjort
  • Publisher : Cambridge University Press
  • Release : 2010-04-12
  • ISBN : 1139484605
  • Pages : 309 pages

Download or read book Bayesian Nonparametrics written by Nils Lid Hjort and published by Cambridge University Press. This book was released on 2010-04-12 with total page 309 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian nonparametrics works - theoretically, computationally. The theory provides highly flexible models whose complexity grows appropriately with the amount of data. Computational issues, though challenging, are no longer intractable. All that is needed is an entry point: this intelligent book is the perfect guide to what can seem a forbidding landscape. Tutorial chapters by Ghosal, Lijoi and Prünster, Teh and Jordan, and Dunson advance from theory, to basic models and hierarchical modeling, to applications and implementation, particularly in computer science and biostatistics. These are complemented by companion chapters by the editors and Griffin and Quintana, providing additional models, examining computational issues, identifying future growth areas, and giving links to related topics. This coherent text gives ready access both to underlying principles and to state-of-the-art practice. Specific examples are drawn from information retrieval, NLP, machine vision, computational biology, biostatistics, and bioinformatics.

Book Statistical Inference as Severe Testing

Download or read book Statistical Inference as Severe Testing written by Deborah G. Mayo and published by Cambridge University Press. This book was released on 2018-09-20 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mounting failures of replication in social and biological sciences give a new urgency to critically appraising proposed reforms. This book pulls back the cover on disagreements between experts charged with restoring integrity to science. It denies two pervasive views of the role of probability in inference: to assign degrees of belief, and to control error rates in a long run. If statistical consumers are unaware of assumptions behind rival evidence reforms, they can't scrutinize the consequences that affect them (in personalized medicine, psychology, etc.). The book sets sail with a simple tool: if little has been done to rule out flaws in inferring a claim, then it has not passed a severe test. Many methods advocated by data experts do not stand up to severe scrutiny and are in tension with successful strategies for blocking or accounting for cherry picking and selective reporting. Through a series of excursions and exhibits, the philosophy and history of inductive inference come alive. Philosophical tools are put to work to solve problems about science and pseudoscience, induction and falsification.

Book Bayesian Nonparametrics

    Book Details:
  • Author : J.K. Ghosh
  • Publisher : Springer Science & Business Media
  • Release : 2006-05-11
  • ISBN : 0387226540
  • Pages : 311 pages

Download or read book Bayesian Nonparametrics written by J.K. Ghosh and published by Springer Science & Business Media. This book was released on 2006-05-11 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the first systematic treatment of Bayesian nonparametric methods and the theory behind them. It will also appeal to statisticians in general. The book is primarily aimed at graduate students and can be used as the text for a graduate course in Bayesian non-parametrics.

Book Parametric and Nonparametric Inference from Record Breaking Data

Download or read book Parametric and Nonparametric Inference from Record Breaking Data written by Sneh Gulati and published by Springer Science & Business Media. This book was released on 2003-01-27 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: By providing a comprehensive look at statistical inference from record-breaking data in both parametric and nonparametric settings, this book treats the area of nonparametric function estimation from such data in detail. Its main purpose is to fill this void on general inference from record values. Statisticians, mathematicians, and engineers will find the book useful as a research reference. It can also serve as part of a graduate-level statistics or mathematics course.

Book Predictive Inference

Download or read book Predictive Inference written by Seymour Geisser and published by Routledge. This book was released on 2017-11-22 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: The author's research has been directed towards inference involving observables rather than parameters. In this book, he brings together his views on predictive or observable inference and its advantages over parametric inference. While the book discusses a variety of approaches to prediction including those based on parametric, nonparametric, and nonstochastic statistical models, it is devoted mainly to predictive applications of the Bayesian approach. It not only substitutes predictive analyses for parametric analyses, but it also presents predictive analyses that have no real parametric analogues. It demonstrates that predictive inference can be a critical component of even strict parametric inference when dealing with interim analyses. This approach to predictive inference will be of interest to statisticians, psychologists, econometricians, and sociologists.

Book Bayesian Analysis in Statistics and Econometrics

Download or read book Bayesian Analysis in Statistics and Econometrics written by Prem K. Goel and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is based on the invited and the contributed presentations given at the Indo-U.S. Workshop on Bayesian Analysis in Statistics and Econometrics (BASE), Dec. 19-23, 1988, held at the Hotel Taj Residency, Bangalore, India. The workshop was jointly sponsored by The Ohio State University, The Indian Statistical Institute, The Indian Econometrics So ciety, U.S. National Science Foundation and the NSF-NBER Seminar on Bayesian Inference in Econometrics. Profs. Morrie DeGroot, Prem Goel, and Arnold Zellner were the program organizers. Unfortunately, Morrie became seriously ill just before the workshop was to start and could not participate in the workshop. Almost a year later, Morrie passed away after fighting valiantly with the illness. Not to find Morrie among ourselves was a shock for most of us. He was a continuous source of inspiration and ideas. Even while Morrie was fighting for his life, we had a lot of discussions about the contents of this volume and the Bangalore Workshop. He even talked about organizing a Second Indo-U.S. workshop some time in the near future. We are dedicating this volume to the memory of Prof. Morris H. DeGroot. We have taken a conscious decision not to include any biography of Morrie in this volume. An excellent biography of Morrie has appeared in Statistical Science [(1991), vol. 6, 1-14], and we could not have done a better job than that.

Book Computer Age Statistical Inference

Download or read book Computer Age Statistical Inference written by Bradley Efron and published by Cambridge University Press. This book was released on 2016-07-21 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and in influence. 'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.

Book Regression Modeling Strategies

Download or read book Regression Modeling Strategies written by Frank E. Harrell and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 583 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many texts are excellent sources of knowledge about individual statistical tools, but the art of data analysis is about choosing and using multiple tools. Instead of presenting isolated techniques, this text emphasizes problem solving strategies that address the many issues arising when developing multivariable models using real data and not standard textbook examples. It includes imputation methods for dealing with missing data effectively, methods for dealing with nonlinear relationships and for making the estimation of transformations a formal part of the modeling process, methods for dealing with "too many variables to analyze and not enough observations," and powerful model validation techniques based on the bootstrap. This text realistically deals with model uncertainty and its effects on inference to achieve "safe data mining".

Book Bayesian Data Analysis  Third Edition

Download or read book Bayesian Data Analysis Third Edition written by Andrew Gelman and published by CRC Press. This book was released on 2013-11-01 with total page 677 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.

Book Handbook of Bayesian  Fiducial  and Frequentist Inference

Download or read book Handbook of Bayesian Fiducial and Frequentist Inference written by James Berger and published by CRC Press. This book was released on 2024-02-26 with total page 564 pages. Available in PDF, EPUB and Kindle. Book excerpt: The emergence of data science, in recent decades, has magnified the need for efficient methodology for analyzing data and highlighted the importance of statistical inference. Despite the tremendous progress that has been made, statistical science is still a young discipline and continues to have several different and competing paths in its approaches and its foundations. While the emergence of competing approaches is a natural progression of any scientific discipline, differences in the foundations of statistical inference can sometimes lead to different interpretations and conclusions from the same dataset. The increased interest in the foundations of statistical inference has led to many publications, and recent vibrant research activities in statistics, applied mathematics, philosophy and other fields of science reflect the importance of this development. The BFF approaches not only bridge foundations and scientific learning, but also facilitate objective and replicable scientific research, and provide scalable computing methodologies for the analysis of big data. Most of the published work typically focusses on a single topic or theme, and the body of work is scattered in different journals. This handbook provides a comprehensive introduction and broad overview of the key developments in the BFF schools of inference. It is intended for researchers and students who wish for an overview of foundations of inference from the BFF perspective and provides a general reference for BFF inference. Key Features: Provides a comprehensive introduction to the key developments in the BFF schools of inference Gives an overview of modern inferential methods, allowing scientists in other fields to expand their knowledge Is accessible for readers with different perspectives and backgrounds

Book Fundamentals of Nonparametric Bayesian Inference

Download or read book Fundamentals of Nonparametric Bayesian Inference written by Subhashis Ghosal and published by Cambridge University Press. This book was released on 2017-06-26 with total page 671 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian nonparametrics comes of age with this landmark text synthesizing theory, methodology and computation.

Book All of Statistics

    Book Details:
  • Author : Larry Wasserman
  • Publisher : Springer Science & Business Media
  • Release : 2013-12-11
  • ISBN : 0387217363
  • Pages : 446 pages

Download or read book All of Statistics written by Larry Wasserman and published by Springer Science & Business Media. This book was released on 2013-12-11 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: Taken literally, the title "All of Statistics" is an exaggeration. But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like non-parametric curve estimation, bootstrapping, and classification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analysing data.

Book Bayesian Theory

    Book Details:
  • Author : José M. Bernardo
  • Publisher : John Wiley & Sons
  • Release : 2009-09-25
  • ISBN : 047031771X
  • Pages : 608 pages

Download or read book Bayesian Theory written by José M. Bernardo and published by John Wiley & Sons. This book was released on 2009-09-25 with total page 608 pages. Available in PDF, EPUB and Kindle. Book excerpt: This highly acclaimed text, now available in paperback, provides a thorough account of key concepts and theoretical results, with particular emphasis on viewing statistical inference as a special case of decision theory. Information-theoretic concepts play a central role in the development of the theory, which provides, in particular, a detailed discussion of the problem of specification of so-called prior ignorance . The work is written from the authors s committed Bayesian perspective, but an overview of non-Bayesian theories is also provided, and each chapter contains a wide-ranging critical re-examination of controversial issues. The level of mathematics used is such that most material is accessible to readers with knowledge of advanced calculus. In particular, no knowledge of abstract measure theory is assumed, and the emphasis throughout is on statistical concepts rather than rigorous mathematics. The book will be an ideal source for all students and researchers in statistics, mathematics, decision analysis, economic and business studies, and all branches of science and engineering, who wish to further their understanding of Bayesian statistics

Book Journal of Research of the National Institute of Standards and Technology

Download or read book Journal of Research of the National Institute of Standards and Technology written by and published by . This book was released on 1994 with total page 904 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reports NIST research and development in the physical and engineering sciences in which the Institute is active. These include physics, chemistry, engineering, mathematics, and computer sciences. Emphasis on measurement methodology and the basic technology underlying standardization.

Book Generalized Linear Models for Insurance Data

Download or read book Generalized Linear Models for Insurance Data written by Piet de Jong and published by Cambridge University Press. This book was released on 2008-02-28 with total page 207 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the only book actuaries need to understand generalized linear models (GLMs) for insurance applications. GLMs are used in the insurance industry to support critical decisions. Until now, no text has introduced GLMs in this context or addressed the problems specific to insurance data. Using insurance data sets, this practical, rigorous book treats GLMs, covers all standard exponential family distributions, extends the methodology to correlated data structures, and discusses recent developments which go beyond the GLM. The issues in the book are specific to insurance data, such as model selection in the presence of large data sets and the handling of varying exposure times. Exercises and data-based practicals help readers to consolidate their skills, with solutions and data sets given on the companion website. Although the book is package-independent, SAS code and output examples feature in an appendix and on the website. In addition, R code and output for all the examples are provided on the website.

Book Predictive Statistics

Download or read book Predictive Statistics written by Bertrand S. Clarke and published by Cambridge University Press. This book was released on 2018-04-12 with total page 657 pages. Available in PDF, EPUB and Kindle. Book excerpt: A bold retooling of statistics to focus directly on predictive performance with traditional and contemporary data types and methodologies.