Download or read book Bayesian Methods for Dynamic Multivariate Models written by Christopher A. Sims and published by . This book was released on 1996 with total page 40 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Bayesian Forecasting and Dynamic Models written by Mike West and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 720 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book we are concerned with Bayesian learning and forecast ing in dynamic environments. We describe the structure and theory of classes of dynamic models, and their uses in Bayesian forecasting. The principles, models and methods of Bayesian forecasting have been developed extensively during the last twenty years. This devel opment has involved thorough investigation of mathematical and sta tistical aspects of forecasting models and related techniques. With this has come experience with application in a variety of areas in commercial and industrial, scientific and socio-economic fields. In deed much of the technical development has been driven by the needs of forecasting practitioners. As a result, there now exists a relatively complete statistical and mathematical framework, although much of this is either not properly documented or not easily accessible. Our primary goals in writing this book have been to present our view of this approach to modelling and forecasting, and to provide a rea sonably complete text for advanced university students and research workers. The text is primarily intended for advanced undergraduate and postgraduate students in statistics and mathematics. In line with this objective we present thorough discussion of mathematical and statistical features of Bayesian analyses of dynamic models, with illustrations, examples and exercises in each Chapter.
Download or read book Bayesian Multivariate Time Series Methods for Empirical Macroeconomics written by Gary Koop and published by Now Publishers Inc. This book was released on 2010 with total page 104 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian Multivariate Time Series Methods for Empirical Macroeconomics provides a survey of the Bayesian methods used in modern empirical macroeconomics. These models have been developed to address the fact that most questions of interest to empirical macroeconomists involve several variables and must be addressed using multivariate time series methods. Many different multivariate time series models have been used in macroeconomics, but Vector Autoregressive (VAR) models have been among the most popular. Bayesian Multivariate Time Series Methods for Empirical Macroeconomics reviews and extends the Bayesian literature on VARs, TVP-VARs and TVP-FAVARs with a focus on the practitioner. The authors go beyond simply defining each model, but specify how to use them in practice, discuss the advantages and disadvantages of each and offer tips on when and why each model can be used.
Download or read book Dynamic Linear Models with R written by Giovanni Petris and published by Springer Science & Business Media. This book was released on 2009-06-12 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: State space models have gained tremendous popularity in recent years in as disparate fields as engineering, economics, genetics and ecology. After a detailed introduction to general state space models, this book focuses on dynamic linear models, emphasizing their Bayesian analysis. Whenever possible it is shown how to compute estimates and forecasts in closed form; for more complex models, simulation techniques are used. A final chapter covers modern sequential Monte Carlo algorithms. The book illustrates all the fundamental steps needed to use dynamic linear models in practice, using R. Many detailed examples based on real data sets are provided to show how to set up a specific model, estimate its parameters, and use it for forecasting. All the code used in the book is available online. No prior knowledge of Bayesian statistics or time series analysis is required, although familiarity with basic statistics and R is assumed.
Download or read book Multivariate Bayesian Statistics written by Daniel B. Rowe and published by CRC Press. This book was released on 2002-11-25 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: Of the two primary approaches to the classic source separation problem, only one does not impose potentially unreasonable model and likelihood constraints: the Bayesian statistical approach. Bayesian methods incorporate the available information regarding the model parameters and not only allow estimation of the sources and mixing coefficients, but
Download or read book Bayesian Statistical Modelling written by Peter Congdon and published by John Wiley & Sons. This book was released on 2007-04-04 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian methods combine the evidence from the data at hand with previous quantitative knowledge to analyse practical problems in a wide range of areas. The calculations were previously complex, but it is now possible to routinely apply Bayesian methods due to advances in computing technology and the use of new sampling methods for estimating parameters. Such developments together with the availability of freeware such as WINBUGS and R have facilitated a rapid growth in the use of Bayesian methods, allowing their application in many scientific disciplines, including applied statistics, public health research, medical science, the social sciences and economics. Following the success of the first edition, this reworked and updated book provides an accessible approach to Bayesian computing and analysis, with an emphasis on the principles of prior selection, identification and the interpretation of real data sets. The second edition: Provides an integrated presentation of theory, examples, applications and computer algorithms. Discusses the role of Markov Chain Monte Carlo methods in computing and estimation. Includes a wide range of interdisciplinary applications, and a large selection of worked examples from the health and social sciences. Features a comprehensive range of methodologies and modelling techniques, and examines model fitting in practice using Bayesian principles. Provides exercises designed to help reinforce the reader’s knowledge and a supplementary website containing data sets and relevant programs. Bayesian Statistical Modelling is ideal for researchers in applied statistics, medical science, public health and the social sciences, who will benefit greatly from the examples and applications featured. The book will also appeal to graduate students of applied statistics, data analysis and Bayesian methods, and will provide a great source of reference for both researchers and students. Praise for the First Edition: “It is a remarkable achievement to have carried out such a range of analysis on such a range of data sets. I found this book comprehensive and stimulating, and was thoroughly impressed with both the depth and the range of the discussions it contains.” – ISI - Short Book Reviews “This is an excellent introductory book on Bayesian modelling techniques and data analysis” – Biometrics “The book fills an important niche in the statistical literature and should be a very valuable resource for students and professionals who are utilizing Bayesian methods.” – Journal of Mathematical Psychology
Download or read book Cointegration and Long Horizon Forecasting written by Mr.Peter F. Christoffersen and published by International Monetary Fund. This book was released on 1997-05-01 with total page 31 pages. Available in PDF, EPUB and Kindle. Book excerpt: Imposing cointegration on a forecasting system, if cointegration is present, is believed to improve long-horizon forecasts. Contrary to this belief, at long horizons nothing is lost by ignoring cointegration when the forecasts are evaluated using standard multivariate forecast accuracy measures. In fact, simple univariate Box-Jenkins forecasts are just as accurate. Our results highlight a potentially important deficiency of standard forecast accuracy measures—they fail to value the maintenance of cointegrating relationships among variables—and we suggest alternatives that explicitly do so.
Download or read book Bayesian Inference of State Space Models written by Kostas Triantafyllopoulos and published by Springer Nature. This book was released on 2021-11-12 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian Inference of State Space Models: Kalman Filtering and Beyond offers a comprehensive introduction to Bayesian estimation and forecasting for state space models. The celebrated Kalman filter, with its numerous extensions, takes centre stage in the book. Univariate and multivariate models, linear Gaussian, non-linear and non-Gaussian models are discussed with applications to signal processing, environmetrics, economics and systems engineering. Over the past years there has been a growing literature on Bayesian inference of state space models, focusing on multivariate models as well as on non-linear and non-Gaussian models. The availability of time series data in many fields of science and industry on the one hand, and the development of low-cost computational capabilities on the other, have resulted in a wealth of statistical methods aimed at parameter estimation and forecasting. This book brings together many of these methods, presenting an accessible and comprehensive introduction to state space models. A number of data sets from different disciplines are used to illustrate the methods and show how they are applied in practice. The R package BTSA, created for the book, includes many of the algorithms and examples presented. The book is essentially self-contained and includes a chapter summarising the prerequisites in undergraduate linear algebra, probability and statistics. An up-to-date and complete account of state space methods, illustrated by real-life data sets and R code, this textbook will appeal to a wide range of students and scientists, notably in the disciplines of statistics, systems engineering, signal processing, data science, finance and econometrics. With numerous exercises in each chapter, and prerequisite knowledge conveniently recalled, it is suitable for upper undergraduate and graduate courses.
Download or read book International Conference of Computational Methods in Sciences and Engineering ICCMSE 2004 written by Theodore Simos and published by CRC Press. This book was released on 2019-04-29 with total page 1335 pages. Available in PDF, EPUB and Kindle. Book excerpt: The International Conference of Computational Methods in Sciences and Engineering (ICCMSE) is unique in its kind. It regroups original contributions from all fields of the traditional Sciences, Mathematics, Physics, Chemistry, Biology, Medicine and all branches of Engineering. The aim of the conference is to bring together computational scientists from several disciplines in order to share methods and ideas. More than 370 extended abstracts have been submitted for consideration for presentation in ICCMSE 2004. From these, 289 extended abstracts have been selected after international peer review by at least two independent reviewers.
Download or read book Bayesian Hierarchical Models written by Peter D. Congdon and published by CRC Press. This book was released on 2019-09-16 with total page 580 pages. Available in PDF, EPUB and Kindle. Book excerpt: An intermediate-level treatment of Bayesian hierarchical models and their applications, this book demonstrates the advantages of a Bayesian approach to data sets involving inferences for collections of related units or variables, and in methods where parameters can be treated as random collections. Through illustrative data analysis and attention to statistical computing, this book facilitates practical implementation of Bayesian hierarchical methods. The new edition is a revision of the book Applied Bayesian Hierarchical Methods. It maintains a focus on applied modelling and data analysis, but now using entirely R-based Bayesian computing options. It has been updated with a new chapter on regression for causal effects, and one on computing options and strategies. This latter chapter is particularly important, due to recent advances in Bayesian computing and estimation, including the development of rjags and rstan. It also features updates throughout with new examples. The examples exploit and illustrate the broader advantages of the R computing environment, while allowing readers to explore alternative likelihood assumptions, regression structures, and assumptions on prior densities. Features: Provides a comprehensive and accessible overview of applied Bayesian hierarchical modelling Includes many real data examples to illustrate different modelling topics R code (based on rjags, jagsUI, R2OpenBUGS, and rstan) is integrated into the book, emphasizing implementation Software options and coding principles are introduced in new chapter on computing Programs and data sets available on the book’s website
Download or read book Modeling Financial Time Series with S PLUS written by Eric Zivot and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 632 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of financial econometrics has exploded over the last decade This book represents an integration of theory, methods, and examples using the S-PLUS statistical modeling language and the S+FinMetrics module to facilitate the practice of financial econometrics. This is the first book to show the power of S-PLUS for the analysis of time series data. It is written for researchers and practitioners in the finance industry, academic researchers in economics and finance, and advanced MBA and graduate students in economics and finance. Readers are assumed to have a basic knowledge of S-PLUS and a solid grounding in basic statistics and time series concepts. This Second Edition is updated to cover S+FinMetrics 2.0 and includes new chapters on copulas, nonlinear regime switching models, continuous-time financial models, generalized method of moments, semi-nonparametric conditional density models, and the efficient method of moments. Eric Zivot is an associate professor and Gary Waterman Distinguished Scholar in the Economics Department, and adjunct associate professor of finance in the Business School at the University of Washington. He regularly teaches courses on econometric theory, financial econometrics and time series econometrics, and is the recipient of the Henry T. Buechel Award for Outstanding Teaching. He is an associate editor of Studies in Nonlinear Dynamics and Econometrics. He has published papers in the leading econometrics journals, including Econometrica, Econometric Theory, the Journal of Business and Economic Statistics, Journal of Econometrics, and the Review of Economics and Statistics. Jiahui Wang is an employee of Ronin Capital LLC. He received a Ph.D. in Economics from the University of Washington in 1997. He has published in leading econometrics journals such as Econometrica and Journal of Business and Economic Statistics, and is the Principal Investigator of National Science Foundation SBIR grants. In 2002 Dr. Wang was selected as one of the "2000 Outstanding Scholars of the 21st Century" by International Biographical Centre.
Download or read book Time Series written by Raquel Prado and published by CRC Press. This book was released on 2010-05-21 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focusing on Bayesian approaches and computations using simulation-based methods for inference, Time Series: Modeling, Computation, and Inference integrates mainstream approaches for time series modeling with significant recent developments in methodology and applications of time series analysis. It encompasses a graduate-level account of Bayesian time series modeling and analysis, a broad range of references to state-of-the-art approaches to univariate and multivariate time series analysis, and emerging topics at research frontiers. The book presents overviews of several classes of models and related methodology for inference, statistical computation for model fitting and assessment, and forecasting. The authors also explore the connections between time- and frequency-domain approaches and develop various models and analyses using Bayesian tools, such as Markov chain Monte Carlo (MCMC) and sequential Monte Carlo (SMC) methods. They illustrate the models and methods with examples and case studies from a variety of fields, including signal processing, biomedicine, and finance. Data sets, R and MATLAB® code, and other material are available on the authors’ websites. Along with core models and methods, this text offers sophisticated tools for analyzing challenging time series problems. It also demonstrates the growth of time series analysis into new application areas.
Download or read book Structural Macroeconometrics written by David N. DeJong and published by Princeton University Press. This book was released on 2011-10-03 with total page 435 pages. Available in PDF, EPUB and Kindle. Book excerpt: The revised edition of the essential resource on macroeconometrics Structural Macroeconometrics provides a thorough overview and in-depth exploration of methodologies, models, and techniques used to analyze forces shaping national economies. In this thoroughly revised second edition, David DeJong and Chetan Dave emphasize time series econometrics and unite theoretical and empirical research, while taking into account important new advances in the field. The authors detail strategies for solving dynamic structural models and present the full range of methods for characterizing and evaluating empirical implications, including calibration exercises, method-of-moment procedures, and likelihood-based procedures, both classical and Bayesian. The authors look at recent strides that have been made to enhance numerical efficiency, consider the expanded applicability of dynamic factor models, and examine the use of alternative assumptions involving learning and rational inattention on the part of decision makers. The treatment of methodologies for obtaining nonlinear model representations has been expanded, and linear and nonlinear model representations are integrated throughout the text. The book offers a rich array of implementation algorithms, sample empirical applications, and supporting computer code. Structural Macroeconometrics is the ideal textbook for graduate students seeking an introduction to macroeconomics and econometrics, and for advanced students pursuing applied research in macroeconomics. The book's historical perspective, along with its broad presentation of alternative methodologies, makes it an indispensable resource for academics and professionals.
Download or read book Bayesian Vars written by Mr.Matteo Ciccarelli and published by International Monetary Fund. This book was released on 2003-05-01 with total page 47 pages. Available in PDF, EPUB and Kindle. Book excerpt: This paper reviews recent advances in the specification and estimation of Bayesian Vector Autoregressive models (BVARs). After describing the Bayesian principle of estimation, we first present the methodology originally developed by Litterman (1986) and Doan et al. (1984) and review alternative priors. We then discuss extensions of the basic model and address issues in forecasting and structural analysis. An application to the estimation of a system of time-varying reaction functions for four European central banks under the European Monetary System (EMS) illustrates how some of the results previously presented may be applied in practice.
Download or read book Handbook of Research on Innovation and Development of E Commerce and E Business in ASEAN written by Almunawar, Mohammad Nabil and published by IGI Global. This book was released on 2020-08-28 with total page 883 pages. Available in PDF, EPUB and Kindle. Book excerpt: Business-to-consumer (B2C) and consumer-to-consumer (C2C) e-commerce transactions, including social commerce, are rapidly expanding, although e-commerce is still small when compared to traditional business transactions. As the familiarity of making purchases using smart devices continues to expand, many global and regional investors hope to target the ASEAN region to tap into the rising digital market in this region. The Handbook of Research on Innovation and Development of E-Commerce and E-Business in ASEAN is an essential reference source that discusses economics, marketing strategies, and mobile payment systems, as well as digital marketplaces, communication technologies, and social technologies utilized for business purposes. Featuring research on topics such as business culture, mobile technology, and consumer satisfaction, this book is ideally designed for policymakers, financial managers, business professionals, academicians, students, and researchers.
Download or read book Monetary Policy Transmission and Financial Stability in a LIC written by Mr.Sohrab Rafiq and published by International Monetary Fund. This book was released on 2015-11-09 with total page 28 pages. Available in PDF, EPUB and Kindle. Book excerpt: This paper explores how monetary policy affects the real economy and its efficacy in promoting financial stability in a large low income country. This paper shows that monetary policy modestly impacts real economic activity and inflation via the bank lending and financial accelerator channels. Second, money market and treasury rates signal changes in the policy stance, while altering banks’ intermediation cost curves due to shifting risk premia. At the same time, evidence points to monetary policy inducing an overshooting in asset prices. These findings suggest that financial stability could be undermined if the calibration of monetary policy is based solely on output and inflation without accounting for the stage of the financial cycle. Finally, the paper discusses policy measures that would enhance the transmission of monetary policy and promote financial stability in Bangladesh.
Download or read book Dynamics of China s Economy written by Zhiming Long and published by BRILL. This book was released on 2023 with total page 393 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers an analysis of China's growth from 1949 to the present day. The authors rebuild time-series databases (capital, education, R&D...), mobilize modern tools of statistics and econometrics, and use various methodologies (mainly Marxist) to carry out this research.