Download or read book Wavefield Inversion written by Armand Wirgin and published by Springer Science & Business Media. This book was released on 2000-04-19 with total page 320 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an up-to-date presentation of a broad range of contemporary problems in inverse scattering involving acoustic, elastic and electromagnetic waves. Descriptions will be given of traditional (but still in use and subject to on-going improvements) and more recent methods for identifying either: a) the homogenized material parameters of (spatially) unbounded or bounded heterogeneous media, or b) the detailed composition (spatial distribution of the material parameters) of unbounded or bounded heterogeneous media, or c) the location, shape, orientation and material characteristics of an object embedded in a wellcharacterized homogeneous, homogenized or heterogeneous unbounded or bounded medium, by inversion of reflected, transmitted or scattered spatiotemporal recorded waveforms resulting from the propagation of probe radiation within the medium.
Download or read book Seismic Reservoir Modeling written by Dario Grana and published by John Wiley & Sons. This book was released on 2021-05-04 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Seismic reservoir characterization aims to build 3-dimensional models of rock and fluid properties, including elastic and petrophysical variables, to describe and monitor the state of the subsurface for hydrocarbon exploration and production and for CO2 sequestration. Rock physics modeling and seismic wave propagation theory provide a set of physical equations to predict the seismic response of subsurface rocks based on their elastic and petrophysical properties. However, the rock and fluid properties are generally unknown and surface geophysical measurements are often the only available data to constrain reservoir models far away from well control. Therefore, reservoir properties are generally estimated from geophysical data as a solution of an inverse problem, by combining rock physics and seismic models with inverse theory and geostatistical methods, in the context of the geological modeling of the subsurface. A probabilistic approach to the inverse problem provides the probability distribution of rock and fluid properties given the measured geophysical data and allows quantifying the uncertainty of the predicted results. The reservoir characterization problem includes both discrete properties, such as facies or rock types, and continuous properties, such as porosity, mineral volumes, fluid saturations, seismic velocities and density. Seismic Reservoir Modeling: Theory, Examples and Algorithms presents the main concepts and methods of seismic reservoir characterization. The book presents an overview of rock physics models that link the petrophysical properties to the elastic properties in porous rocks and a review of the most common geostatistical methods to interpolate and simulate multiple realizations of subsurface properties conditioned on a limited number of direct and indirect measurements based on spatial correlation models. The core of the book focuses on Bayesian inverse methods for the prediction of elastic petrophysical properties from seismic data using analytical and numerical statistical methods. The authors present basic and advanced methodologies of the current state of the art in seismic reservoir characterization and illustrate them through expository examples as well as real data applications to hydrocarbon reservoirs and CO2 sequestration studies.
Download or read book Seismic Inversion written by Yanghua Wang and published by John Wiley & Sons. This book was released on 2016-09-15 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Seismic inversion aims to reconstruct a quantitative model of the Earth subsurface, by solving an inverse problem based on seismic measurements. There are at least three fundamental issues to be solved simultaneously: non-linearity, non-uniqueness, and instability. This book covers the basic theory and techniques used in seismic inversion, corresponding to these three issues, emphasising the physical interpretation of theoretical concepts and practical solutions. This book is written for master and doctoral students who need to understand the mathematical tools and the engineering aspects of the inverse problem needed to obtain geophysically meaningful solutions. Building on the basic theory of linear inverse problems, the methodologies of seismic inversion are explained in detail, including ray-impedance inversion and waveform tomography etc. The application methodologies are categorised into convolutional and wave-equation based groups. This systematic presentation simplifies the subject and enables an in-depth understanding of seismic inversion. This book also provides a practical guide to reservoir geophysicists who are attempting quantitative reservoir characterisation based on seismic data. Philosophically, the seismic inverse problem allows for a range of possible solutions, but the techniques described herein enable geophysicists to exclude models that cannot satisfy the available data. This book summarises the author’s extensive experience in both industry and academia and includes innovative techniques not previously published.
Download or read book Introduction to Geological Uncertainty Management in Reservoir Characterization and Optimization written by Reza Yousefzadeh and published by Springer Nature. This book was released on 2023-04-08 with total page 142 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores methods for managing uncertainty in reservoir characterization and optimization. It covers the fundamentals, challenges, and solutions to tackle the challenges made by geological uncertainty. The first chapter discusses types and sources of uncertainty and the challenges in different phases of reservoir management, along with general methods to manage it. The second chapter focuses on geological uncertainty, explaining its impact on field development and methods to handle it using prior information, seismic and petrophysical data, and geological parametrization. The third chapter deals with reducing geological uncertainty through history matching and the various methods used, including closed-loop management, ensemble assimilation, and stochastic optimization. The fourth chapter presents dimensionality reduction methods to tackle high-dimensional geological realizations. The fifth chapter covers field development optimization using robust optimization, including solutions for its challenges such as high computational cost and risk attitudes. The final chapter introduces different types of proxy models in history matching and robust optimization, discussing their pros and cons, and applications. The book will be of interest to researchers and professors, geologists and professionals in oil and gas production and exploration.
Download or read book Seismic Reservoir Modeling written by Dario Grana and published by John Wiley & Sons. This book was released on 2021-05-04 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: Seismic reservoir characterization aims to build 3-dimensional models of rock and fluid properties, including elastic and petrophysical variables, to describe and monitor the state of the subsurface for hydrocarbon exploration and production and for CO2 sequestration. Rock physics modeling and seismic wave propagation theory provide a set of physical equations to predict the seismic response of subsurface rocks based on their elastic and petrophysical properties. However, the rock and fluid properties are generally unknown and surface geophysical measurements are often the only available data to constrain reservoir models far away from well control. Therefore, reservoir properties are generally estimated from geophysical data as a solution of an inverse problem, by combining rock physics and seismic models with inverse theory and geostatistical methods, in the context of the geological modeling of the subsurface. A probabilistic approach to the inverse problem provides the probability distribution of rock and fluid properties given the measured geophysical data and allows quantifying the uncertainty of the predicted results. The reservoir characterization problem includes both discrete properties, such as facies or rock types, and continuous properties, such as porosity, mineral volumes, fluid saturations, seismic velocities and density. Seismic Reservoir Modeling: Theory, Examples and Algorithms presents the main concepts and methods of seismic reservoir characterization. The book presents an overview of rock physics models that link the petrophysical properties to the elastic properties in porous rocks and a review of the most common geostatistical methods to interpolate and simulate multiple realizations of subsurface properties conditioned on a limited number of direct and indirect measurements based on spatial correlation models. The core of the book focuses on Bayesian inverse methods for the prediction of elastic petrophysical properties from seismic data using analytical and numerical statistical methods. The authors present basic and advanced methodologies of the current state of the art in seismic reservoir characterization and illustrate them through expository examples as well as real data applications to hydrocarbon reservoirs and CO2 sequestration studies.
Download or read book Proceedings of the International Field Exploration and Development Conference 2022 written by Jia'en Lin and published by Springer Nature. This book was released on 2023-08-05 with total page 7600 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on reservoir surveillance and management, reservoir evaluation and dynamic description, reservoir production stimulation and EOR, ultra-tight reservoir, unconventional oil and gas resources technology, oil and gas well production testing, and geomechanics. This book is a compilation of selected papers from the 12th International Field Exploration and Development Conference (IFEDC 2022). The conference not only provides a platform to exchanges experience, but also promotes the development of scientific research in oil & gas exploration and production. The main audience for the work includes reservoir engineer, geological engineer, enterprise managers, senior engineers as well as professional students.
Download or read book Seismic Reservoir Characterization written by Philippe Doyen and published by . This book was released on 2007 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Geophysics and Geosequestration written by Thomas L. Davis and published by Cambridge University Press. This book was released on 2019-05-09 with total page 391 pages. Available in PDF, EPUB and Kindle. Book excerpt: An overview of the geophysical techniques and analysis methods for monitoring subsurface carbon dioxide storage for researchers and industry practitioners.
Download or read book Quantitative Seismic Interpretation written by Per Avseth and published by Cambridge University Press. This book was released on 2010-06-10 with total page 524 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantitative Seismic Interpretation demonstrates how rock physics can be applied to predict reservoir parameters, such as lithologies and pore fluids, from seismically derived attributes. The authors provide an integrated methodology and practical tools for quantitative interpretation, uncertainty assessment, and characterization of subsurface reservoirs using well-log and seismic data. They illustrate the advantages of these new methodologies, while providing advice about limitations of the methods and traditional pitfalls. This book is aimed at graduate students, academics and industry professionals working in the areas of petroleum geoscience and exploration seismology. It will also interest environmental geophysicists seeking a quantitative subsurface characterization from shallow seismic data. The book includes problem sets and a case-study, for which seismic and well-log data, and MATLAB® codes are provided on a website (http://www.cambridge.org/9780521151351). These resources will allow readers to gain a hands-on understanding of the methodologies.
Download or read book Seismic Amplitude Inversion in Reflection Tomography written by Yanghua Wang and published by Elsevier. This book was released on 2003-02-25 with total page 271 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book of its kind on seismic amplitude inversion in the context of reflection tomography. The aim of the monograph is to advocate the use of ray-amplitude data, separately or jointly with traveltime data, in reflection seismic tomography.The emphasis of seismic exploration is on imaging techniques, so that seismic section can be interpreted directly as a geological section. In contrast it is perhaps ironic that, in decades of industrial seismology, one major aspect of waveform data that potentially is easier to measure and analyse has generally been ignored. That is, the information content of seismic amplitudes. Perhaps the potential complexity has deterred most researchers from a more thorough investigation of the practical use of seismic amplitude data. The author of this volume presents an authoritative and detailed study of amplitude data, as used in conjunction with traveltime data, to provide better constraints on the variation of seismic wave speed in the subsurface.One of the fundamental problems in conventional reflection seismic tomography using only traveltime data is the possible ambiguity between the velocity variation and the reflector depth. The inclusion of amplitude data in the inversion may help to resolve this problem because the amplitudes and traveltimes are sensitive to different features of the subsurface model, and thereby provide more accurate information about the subsurface structure and the velocity distribution. An essential goal of this monograph is to make the amplitude inversion method work with real reflection seismic data.
Download or read book Seismic Amplitude written by Rob Simm and published by Cambridge University Press. This book was released on 2014-04-17 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces practical seismic analysis techniques and evaluation of interpretation confidence, for graduate students and industry professionals - independent of commercial software products.
Download or read book Geostatistical Simulations written by M. Armstrong and published by Springer Science & Business Media. This book was released on 1994-03-31 with total page 274 pages. Available in PDF, EPUB and Kindle. Book excerpt: When this two-day meeting was proposed, it was certainly not conceived as a celebration, much less as a party. However, on reflection, this might have been a wholly appropriate gesture because geostatistical simulation came of age this year: it is now 21 years since it was first proposed and implemented in the form of the turning bands method. The impetus for the original development was the mining industry, principally the problems encountered in mine planning and design based on smoothed estimates which did not reflect the degree of variability and detail present in the real, mined values. The sustained period of development over recent years has been driven by hydrocarbon applications. In addition to the original turning bands method there are now at least six other established methods of geostatistical simulation. Having reached adulthood, it is entirely appropriate that geostatistical simulation should now be subjected to an intense period of reflection and assessment. That we have now entered this period was evident in many of the papers and much of the discussion at the Fontainebleau meeting. Many questions were clearly articulated for the first time and, although many ofthem were not unambiguously answered, their presentation at the meeting and publication in this book will generate confirmatory studies and further research.
Download or read book Seismic Reflections of Rock Properties written by Jack Dvorkin and published by Cambridge University Press. This book was released on 2014-03-13 with total page 351 pages. Available in PDF, EPUB and Kindle. Book excerpt: An accessible guide to using the rock physics-based forward modeling approach for seismic subsurface mapping, for researchers and petroleum geologists.
Download or read book Fine Reservoir Description written by Huanqing Chen and published by Elsevier. This book was released on 2022-07-14 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fine Reservoir Description: Techniques, Current Status, Challenges and Solutions presents studies on fine oil and gas reservoirs, covering aspects of current status and progress, content and methods/techniques, as well as challenges and solutions through literature review and case studies of reservoirs, including volcanic rocks in the Songliao Basin, glutenite at the northwestern margin of the Junggar Basin, and sandstone in the Liaohe Basin, China. This book contains a large amount of data and illustrations. - Provides a comprehensive overview of the latest advances in refined reservoir characterization for three types of reservoirs: high water cut, low permeability, and complex lithology - Includes methods and techniques of fine reservoir description that are elaborated from nine aspects, such as fine stratigraphic division and correlation, fracture characterization and fine characterization of sand body - Presents eight easy to use measures that are proposed to solve the problems of fine reservoir description
Download or read book Seismic Attributes as the Framework for Data Integration Throughout the Oilfield Life Cycle written by Kurt J. Marfurt and published by SEG Books. This book was released on 2018-01-31 with total page 509 pages. Available in PDF, EPUB and Kindle. Book excerpt: Useful attributes capture and quantify key components of the seismic amplitude and texture for subsequent integration with well log, microseismic, and production data through either interactive visualization or machine learning. Although both approaches can accelerate and facilitate the interpretation process, they can by no means replace the interpreter. Interpreter “grayware” includes the incorporation and validation of depositional, diagenetic, and tectonic deformation models, the integration of rock physics systematics, and the recognition of unanticipated opportunities and hazards. This book is written to accompany and complement the 2018 SEG Distinguished Instructor Short Course that provides a rapid overview of how 3D seismic attributes provide a framework for data integration over the life of the oil and gas field. Key concepts are illustrated by example, showing modern workflows based on interactive interpretation and display as well as those aided by machine learning.
Download or read book Practical Applications of Time lapse Seismic Data written by David H. Johnston and published by SEG Books. This book was released on 2013 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: Time-lapse (4D) seismic technology is a key enabler for improved hydrocarbon recovery and more cost-effective field operations. This book shows how 4D data are used for reservoir surveillance, add value to reservoir management, and provide valuable insight on dynamic reservoir properties such as fluid saturation, pressure, and temperature.
Download or read book Advances in Subsurface Data Analytics written by Shuvajit Bhattacharya and published by Elsevier. This book was released on 2022-05-18 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Subsurface Data Analytics: Traditional and Physics-Based Approaches brings together the fundamentals of popular and emerging machine learning (ML) algorithms with their applications in subsurface analysis, including geology, geophysics, petrophysics, and reservoir engineering. The book is divided into four parts: traditional ML, deep learning, physics-based ML, and new directions, with an increasing level of diversity and complexity of topics. Each chapter focuses on one ML algorithm with a detailed workflow for a specific application in geosciences. Some chapters also compare the results from an algorithm with others to better equip the readers with different strategies to implement automated workflows for subsurface analysis. Advances in Subsurface Data Analytics: Traditional and Physics-Based Approaches will help researchers in academia and professional geoscientists working on the subsurface-related problems (oil and gas, geothermal, carbon sequestration, and seismology) at different scales to understand and appreciate current trends in ML approaches, their applications, advances and limitations, and future potential in geosciences by bringing together several contributions in a single volume. - Covers fundamentals of simple machine learning and deep learning algorithms, and physics-based approaches written by practitioners in academia and industry - Presents detailed case studies of individual machine learning algorithms and optimal strategies in subsurface characterization around the world - Offers an analysis of future trends in machine learning in geosciences