EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Bayesian Time Series Models

Download or read book Bayesian Time Series Models written by David Barber and published by Cambridge University Press. This book was released on 2011-08-11 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first unified treatment of time series modelling techniques spanning machine learning, statistics, engineering and computer science.

Book Parametric Statistical Change Point Analysis

Download or read book Parametric Statistical Change Point Analysis written by Jie Chen and published by Springer Science & Business Media. This book was released on 2013-11-11 with total page 190 pages. Available in PDF, EPUB and Kindle. Book excerpt: Recently there has been a keen interest in the statistical analysis of change point detec tion and estimation. Mainly, it is because change point problems can be encountered in many disciplines such as economics, finance, medicine, psychology, geology, litera ture, etc. , and even in our daily lives. From the statistical point of view, a change point is a place or time point such that the observations follow one distribution up to that point and follow another distribution after that point. Multiple change points problem can also be defined similarly. So the change point(s) problem is two fold: one is to de cide if there is any change (often viewed as a hypothesis testing problem), another is to locate the change point when there is a change present (often viewed as an estimation problem). The earliest change point study can be traced back to the 1950s. During the fol lowing period of some forty years, numerous articles have been published in various journals and proceedings. Many of them cover the topic of single change point in the means of a sequence of independently normally distributed random variables. Another popularly covered topic is a change point in regression models such as linear regres sion and autoregression. The methods used are mainly likelihood ratio, nonparametric, and Bayesian. Few authors also considered the change point problem in other model settings such as the gamma and exponential.

Book Change point Problems

Download or read book Change point Problems written by Edward G. Carlstein and published by IMS. This book was released on 1994 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Applied Bayesian Modelling

Download or read book Applied Bayesian Modelling written by Peter Congdon and published by John Wiley & Sons. This book was released on 2014-05-23 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an accessible approach to Bayesian computing and data analysis, with an emphasis on the interpretation of real data sets. Following in the tradition of the successful first edition, this book aims to make a wide range of statistical modeling applications accessible using tested code that can be readily adapted to the reader's own applications. The second edition has been thoroughly reworked and updated to take account of advances in the field. A new set of worked examples is included. The novel aspect of the first edition was the coverage of statistical modeling using WinBUGS and OPENBUGS. This feature continues in the new edition along with examples using R to broaden appeal and for completeness of coverage.

Book Bayesian Analysis of Time Series

Download or read book Bayesian Analysis of Time Series written by Lyle D. Broemeling and published by CRC Press. This book was released on 2019-04-16 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: In many branches of science relevant observations are taken sequentially over time. Bayesian Analysis of Time Series discusses how to use models that explain the probabilistic characteristics of these time series and then utilizes the Bayesian approach to make inferences about their parameters. This is done by taking the prior information and via Bayes theorem implementing Bayesian inferences of estimation, testing hypotheses, and prediction. The methods are demonstrated using both R and WinBUGS. The R package is primarily used to generate observations from a given time series model, while the WinBUGS packages allows one to perform a posterior analysis that provides a way to determine the characteristic of the posterior distribution of the unknown parameters. Features Presents a comprehensive introduction to the Bayesian analysis of time series. Gives many examples over a wide variety of fields including biology, agriculture, business, economics, sociology, and astronomy. Contains numerous exercises at the end of each chapter many of which use R and WinBUGS. Can be used in graduate courses in statistics and biostatistics, but is also appropriate for researchers, practitioners and consulting statisticians. About the author Lyle D. Broemeling, Ph.D., is Director of Broemeling and Associates Inc., and is a consulting biostatistician. He has been involved with academic health science centers for about 20 years and has taught and been a consultant at the University of Texas Medical Branch in Galveston, The University of Texas MD Anderson Cancer Center and the University of Texas School of Public Health. His main interest is in developing Bayesian methods for use in medical and biological problems and in authoring textbooks in statistics. His previous books for Chapman & Hall/CRC include Bayesian Biostatistics and Diagnostic Medicine, and Bayesian Methods for Agreement.

Book Bayesian Data Analysis  Third Edition

Download or read book Bayesian Data Analysis Third Edition written by Andrew Gelman and published by CRC Press. This book was released on 2013-11-01 with total page 677 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.

Book Bayesian Statistical Modelling

Download or read book Bayesian Statistical Modelling written by Peter Congdon and published by John Wiley & Sons. This book was released on 2007-04-04 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian methods combine the evidence from the data at hand with previous quantitative knowledge to analyse practical problems in a wide range of areas. The calculations were previously complex, but it is now possible to routinely apply Bayesian methods due to advances in computing technology and the use of new sampling methods for estimating parameters. Such developments together with the availability of freeware such as WINBUGS and R have facilitated a rapid growth in the use of Bayesian methods, allowing their application in many scientific disciplines, including applied statistics, public health research, medical science, the social sciences and economics. Following the success of the first edition, this reworked and updated book provides an accessible approach to Bayesian computing and analysis, with an emphasis on the principles of prior selection, identification and the interpretation of real data sets. The second edition: Provides an integrated presentation of theory, examples, applications and computer algorithms. Discusses the role of Markov Chain Monte Carlo methods in computing and estimation. Includes a wide range of interdisciplinary applications, and a large selection of worked examples from the health and social sciences. Features a comprehensive range of methodologies and modelling techniques, and examines model fitting in practice using Bayesian principles. Provides exercises designed to help reinforce the reader’s knowledge and a supplementary website containing data sets and relevant programs. Bayesian Statistical Modelling is ideal for researchers in applied statistics, medical science, public health and the social sciences, who will benefit greatly from the examples and applications featured. The book will also appeal to graduate students of applied statistics, data analysis and Bayesian methods, and will provide a great source of reference for both researchers and students. Praise for the First Edition: “It is a remarkable achievement to have carried out such a range of analysis on such a range of data sets. I found this book comprehensive and stimulating, and was thoroughly impressed with both the depth and the range of the discussions it contains.” – ISI - Short Book Reviews “This is an excellent introductory book on Bayesian modelling techniques and data analysis” – Biometrics “The book fills an important niche in the statistical literature and should be a very valuable resource for students and professionals who are utilizing Bayesian methods.” – Journal of Mathematical Psychology

Book Sequential Analysis

    Book Details:
  • Author : Alexander Tartakovsky
  • Publisher : CRC Press
  • Release : 2014-08-27
  • ISBN : 1439838216
  • Pages : 600 pages

Download or read book Sequential Analysis written by Alexander Tartakovsky and published by CRC Press. This book was released on 2014-08-27 with total page 600 pages. Available in PDF, EPUB and Kindle. Book excerpt: Sequential Analysis: Hypothesis Testing and Changepoint Detection systematically develops the theory of sequential hypothesis testing and quickest changepoint detection. It also describes important applications in which theoretical results can be used efficiently. The book reviews recent accomplishments in hypothesis testing and changepoint detecti

Book Climate Time Series Analysis

    Book Details:
  • Author : Manfred Mudelsee
  • Publisher : Springer Science & Business Media
  • Release : 2010-08-26
  • ISBN : 9048194822
  • Pages : 497 pages

Download or read book Climate Time Series Analysis written by Manfred Mudelsee and published by Springer Science & Business Media. This book was released on 2010-08-26 with total page 497 pages. Available in PDF, EPUB and Kindle. Book excerpt: Climate is a paradigm of a complex system. Analysing climate data is an exciting challenge, which is increased by non-normal distributional shape, serial dependence, uneven spacing and timescale uncertainties. This book presents bootstrap resampling as a computing-intensive method able to meet the challenge. It shows the bootstrap to perform reliably in the most important statistical estimation techniques: regression, spectral analysis, extreme values and correlation. This book is written for climatologists and applied statisticians. It explains step by step the bootstrap algorithms (including novel adaptions) and methods for confidence interval construction. It tests the accuracy of the algorithms by means of Monte Carlo experiments. It analyses a large array of climate time series, giving a detailed account on the data and the associated climatological questions. This makes the book self-contained for graduate students and researchers.

Book Bayesian Analysis of Linear Models

Download or read book Bayesian Analysis of Linear Models written by Broemeling and published by Routledge. This book was released on 2017-11-22 with total page 480 pages. Available in PDF, EPUB and Kindle. Book excerpt: With Bayesian statistics rapidly becoming accepted as a way to solve applied statisticalproblems, the need for a comprehensive, up-to-date source on the latest advances in thisfield has arisen.Presenting the basic theory of a large variety of linear models from a Bayesian viewpoint,Bayesian Analysis of Linear Models fills this need. Plus, this definitive volume containssomething traditional-a review of Bayesian techniques and methods of estimation, hypothesis,testing, and forecasting as applied to the standard populations ... somethinginnovative-a new approach to mixed models and models not generally studied by statisticianssuch as linear dynamic systems and changing parameter models ... and somethingpractical-clear graphs, eary-to-understand examples, end-of-chapter problems, numerousreferences, and a distribution appendix.Comprehensible, unique, and in-depth, Bayesian Analysis of Linear Models is the definitivemonograph for statisticians, econometricians, and engineers. In addition, this text isideal for students in graduate-level courses such as linear models, econometrics, andBayesian inference.

Book Bayesian Forecasting and Dynamic Models

Download or read book Bayesian Forecasting and Dynamic Models written by Mike West and published by Springer Science & Business Media. This book was released on 2006-05-02 with total page 695 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text is concerned with Bayesian learning, inference and forecasting in dynamic environments. We describe the structure and theory of classes of dynamic models and their uses in forecasting and time series analysis. The principles, models and methods of Bayesian forecasting and time - ries analysis have been developed extensively during the last thirty years. Thisdevelopmenthasinvolvedthoroughinvestigationofmathematicaland statistical aspects of forecasting models and related techniques. With this has come experience with applications in a variety of areas in commercial, industrial, scienti?c, and socio-economic ?elds. Much of the technical - velopment has been driven by the needs of forecasting practitioners and applied researchers. As a result, there now exists a relatively complete statistical and mathematical framework, presented and illustrated here. In writing and revising this book, our primary goals have been to present a reasonably comprehensive view of Bayesian ideas and methods in m- elling and forecasting, particularly to provide a solid reference source for advanced university students and research workers.

Book Bayesian Hierarchical Models

Download or read book Bayesian Hierarchical Models written by Peter D. Congdon and published by CRC Press. This book was released on 2019-09-16 with total page 487 pages. Available in PDF, EPUB and Kindle. Book excerpt: An intermediate-level treatment of Bayesian hierarchical models and their applications, this book demonstrates the advantages of a Bayesian approach to data sets involving inferences for collections of related units or variables, and in methods where parameters can be treated as random collections. Through illustrative data analysis and attention to statistical computing, this book facilitates practical implementation of Bayesian hierarchical methods. The new edition is a revision of the book Applied Bayesian Hierarchical Methods. It maintains a focus on applied modelling and data analysis, but now using entirely R-based Bayesian computing options. It has been updated with a new chapter on regression for causal effects, and one on computing options and strategies. This latter chapter is particularly important, due to recent advances in Bayesian computing and estimation, including the development of rjags and rstan. It also features updates throughout with new examples. The examples exploit and illustrate the broader advantages of the R computing environment, while allowing readers to explore alternative likelihood assumptions, regression structures, and assumptions on prior densities. Features: Provides a comprehensive and accessible overview of applied Bayesian hierarchical modelling Includes many real data examples to illustrate different modelling topics R code (based on rjags, jagsUI, R2OpenBUGS, and rstan) is integrated into the book, emphasizing implementation Software options and coding principles are introduced in new chapter on computing Programs and data sets available on the book’s website

Book Econometrics of Structural Change

Download or read book Econometrics of Structural Change written by Walter Krämer and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 134 pages. Available in PDF, EPUB and Kindle. Book excerpt: Econometric models are made up of assumptions which never exactly match reality. Among the most contested ones is the requirement that the coefficients of an econometric model remain stable over time. Recent years have therefore seen numerous attempts to test for it or to model possible structural change when it can no longer be ignored. This collection of papers from Empirical Economics mirrors part of this development. The point of departure of most studies in this volume is the standard linear regression model Yt = x;fJt + U (t = I, ... , 1), t where notation is obvious and where the index t emphasises the fact that structural change is mostly discussed and encountered in a time series context. It is much less of a problem for cross section data, although many tests apply there as well. The null hypothesis of most tests for structural change is that fJt = fJo for all t, i.e. that the same regression applies to all time periods in the sample and that the disturbances u are well behaved. The well known Chow test for instance assumes t that there is a single structural shift at a known point in time, i.e. that fJt = fJo (t

Book Monte Carlo Statistical Methods

Download or read book Monte Carlo Statistical Methods written by Christian Robert and published by Springer Science & Business Media. This book was released on 2013-03-14 with total page 670 pages. Available in PDF, EPUB and Kindle. Book excerpt: We have sold 4300 copies worldwide of the first edition (1999). This new edition contains five completely new chapters covering new developments.

Book Change Point Analysis in Nonstationary Stochastic Models

Download or read book Change Point Analysis in Nonstationary Stochastic Models written by Boris Brodsky and published by CRC Press. This book was released on 2016-12-12 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the development of methods for detection and estimation of changes in complex systems. These systems are generally described by nonstationary stochastic models, which comprise both static and dynamic regimes, linear and nonlinear dynamics, and constant and time-variant structures of such systems. It covers both retrospective and sequential problems, particularly theoretical methods of optimal detection. Such methods are constructed and their characteristics are analyzed both theoretically and experimentally. Suitable for researchers working in change-point analysis and stochastic modelling, the book includes theoretical details combined with computer simulations and practical applications. Its rigorous approach will be appreciated by those looking to delve into the details of the methods, as well as those looking to apply them.

Book Inference for Change Point and Post Change Means After a CUSUM Test

Download or read book Inference for Change Point and Post Change Means After a CUSUM Test written by Yanhong Wu and published by Springer Science & Business Media. This book was released on 2007-12-29 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main emphasis is on the inference problem for the change point and post-change parameters after a change has been detected. More specifically, due to the convenient form and statistical properties, the author concentrates on the CUSUM procedure. The goal is to provide some quantitative evaluations on the statistical properties of estimators on the change point and post-change parameters.

Book Density Ratio Estimation in Machine Learning

Download or read book Density Ratio Estimation in Machine Learning written by Masashi Sugiyama and published by Cambridge University Press. This book was released on 2012-02-20 with total page 343 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book introduces theories, methods and applications of density ratio estimation, a newly emerging paradigm in the machine learning community.