Download or read book Bayesian Analysis and Uncertainty in Economic Theory written by Richard Michael Cyert and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: We began this research with the objective of applying Bayesian methods of analysis to various aspects of economic theory. We were attracted to the Bayesian approach because it seemed the best analytic framework available for dealing with decision making under uncertainty, and the research presented in this book has only served to strengthen our belief in the appropriateness and usefulness of this methodology. More specif ically, we believe that the concept of organizational learning is funda mental to decision making under uncertainty in economics and that the Bayesian framework is the most appropriate for developing that concept. The central and unifying theme of this book is decision making under uncertainty in microeconomic theory. Our fundamental aim is to explore the ways in which firms and households make decisions and to develop models that have a strong empirical connection. Thus, we have attempted to contribute to economic theory by formalizing models of the actual pro cess of decision making under uncertainty. Bayesian methodology pro vides the appropriate vehicle for this formalization.
Download or read book Bayesian Analysis and Uncertainty in Economic Theory written by Richard Michael Cyert and published by . This book was released on 1987-07-30 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Bayesian Analysis and Uncertainty in Economic Theory written by Richard Michael Cyert and published by Springer. This book was released on 2011-10-12 with total page 206 pages. Available in PDF, EPUB and Kindle. Book excerpt: We began this research with the objective of applying Bayesian methods of analysis to various aspects of economic theory. We were attracted to the Bayesian approach because it seemed the best analytic framework available for dealing with decision making under uncertainty, and the research presented in this book has only served to strengthen our belief in the appropriateness and usefulness of this methodology. More specif ically, we believe that the concept of organizational learning is funda mental to decision making under uncertainty in economics and that the Bayesian framework is the most appropriate for developing that concept. The central and unifying theme of this book is decision making under uncertainty in microeconomic theory. Our fundamental aim is to explore the ways in which firms and households make decisions and to develop models that have a strong empirical connection. Thus, we have attempted to contribute to economic theory by formalizing models of the actual pro cess of decision making under uncertainty. Bayesian methodology pro vides the appropriate vehicle for this formalization.
Download or read book Bayesian Data Analysis Third Edition written by Andrew Gelman and published by CRC Press. This book was released on 2013-11-01 with total page 677 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its third edition, this classic book is widely considered the leading text on Bayesian methods, lauded for its accessible, practical approach to analyzing data and solving research problems. Bayesian Data Analysis, Third Edition continues to take an applied approach to analysis using up-to-date Bayesian methods. The authors—all leaders in the statistics community—introduce basic concepts from a data-analytic perspective before presenting advanced methods. Throughout the text, numerous worked examples drawn from real applications and research emphasize the use of Bayesian inference in practice. New to the Third Edition Four new chapters on nonparametric modeling Coverage of weakly informative priors and boundary-avoiding priors Updated discussion of cross-validation and predictive information criteria Improved convergence monitoring and effective sample size calculations for iterative simulation Presentations of Hamiltonian Monte Carlo, variational Bayes, and expectation propagation New and revised software code The book can be used in three different ways. For undergraduate students, it introduces Bayesian inference starting from first principles. For graduate students, the text presents effective current approaches to Bayesian modeling and computation in statistics and related fields. For researchers, it provides an assortment of Bayesian methods in applied statistics. Additional materials, including data sets used in the examples, solutions to selected exercises, and software instructions, are available on the book’s web page.
Download or read book The Uncertainty Analysis of Model Results written by Eduard Hofer and published by Springer. This book was released on 2018-07-01 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a practical guide to the uncertainty analysis of computer model applications. Used in many areas, such as engineering, ecology and economics, computer models are subject to various uncertainties at the level of model formulations, parameter values and input data. Naturally, it would be advantageous to know the combined effect of these uncertainties on the model results as well as whether the state of knowledge should be improved in order to reduce the uncertainty of the results most effectively. The book supports decision-makers, model developers and users in their argumentation for an uncertainty analysis and assists them in the interpretation of the analysis results.
Download or read book Bayesian Theory written by José M. Bernardo and published by John Wiley & Sons. This book was released on 2009-09-25 with total page 608 pages. Available in PDF, EPUB and Kindle. Book excerpt: This highly acclaimed text, now available in paperback, provides a thorough account of key concepts and theoretical results, with particular emphasis on viewing statistical inference as a special case of decision theory. Information-theoretic concepts play a central role in the development of the theory, which provides, in particular, a detailed discussion of the problem of specification of so-called prior ignorance . The work is written from the authors s committed Bayesian perspective, but an overview of non-Bayesian theories is also provided, and each chapter contains a wide-ranging critical re-examination of controversial issues. The level of mathematics used is such that most material is accessible to readers with knowledge of advanced calculus. In particular, no knowledge of abstract measure theory is assumed, and the emphasis throughout is on statistical concepts rather than rigorous mathematics. The book will be an ideal source for all students and researchers in statistics, mathematics, decision analysis, economic and business studies, and all branches of science and engineering, who wish to further their understanding of Bayesian statistics
Download or read book Bayesian Cost Effectiveness Analysis with the R package BCEA written by Gianluca Baio and published by Springer. This book was released on 2017-05-25 with total page 181 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book provides a description of the process of health economic evaluation and modelling for cost-effectiveness analysis, particularly from the perspective of a Bayesian statistical approach. Some relevant theory and introductory concepts are presented using practical examples and two running case studies. The book also describes in detail how to perform health economic evaluations using the R package BCEA (Bayesian Cost-Effectiveness Analysis). BCEA can be used to post-process the results of a Bayesian cost-effectiveness model and perform advanced analyses producing standardised and highly customisable outputs. It presents all the features of the package, including its many functions and their practical application, as well as its user-friendly web interface. The book is a valuable resource for statisticians and practitioners working in the field of health economics wanting to simplify and standardise their workflow, for example in the preparation of dossiers in support of marketing authorisation, or academic and scientific publications.
Download or read book Towards Bayesian Model Based Demography written by Jakub Bijak and published by Springer Nature. This book was released on 2021-12-09 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: This open access book presents a ground-breaking approach to developing micro-foundations for demography and migration studies. It offers a unique and novel methodology for creating empirically grounded agent-based models of international migration – one of the most uncertain population processes and a top-priority policy area. The book discusses in detail the process of building a simulation model of migration, based on a population of intelligent, cognitive agents, their networks and institutions, all interacting with one another. The proposed model-based approach integrates behavioural and social theory with formal modelling, by embedding the interdisciplinary modelling process within a wider inductive framework based on the Bayesian statistical reasoning. Principles of uncertainty quantification are used to devise innovative computer-based simulations, and to learn about modelling the simulated individuals and the way they make decisions. The identified knowledge gaps are subsequently filled with information from dedicated laboratory experiments on cognitive aspects of human decision-making under uncertainty. In this way, the models are built iteratively, from the bottom up, filling an important epistemological gap in migration studies, and social sciences more broadly.
Download or read book Handbook of the Economics of Risk and Uncertainty written by Mark Machina and published by Newnes. This book was released on 2013-11-14 with total page 897 pages. Available in PDF, EPUB and Kindle. Book excerpt: The need to understand the theories and applications of economic and finance risk has been clear to everyone since the financial crisis, and this collection of original essays proffers broad, high-level explanations of risk and uncertainty. The economics of risk and uncertainty is unlike most branches of economics in spanning from the individual decision-maker to the market (and indeed, social decisions), and ranging from purely theoretical analysis through individual experimentation, empirical analysis, and applied and policy decisions. It also has close and sometimes conflicting relationships with theoretical and applied statistics, and psychology. The aim of this volume is to provide an overview of diverse aspects of this field, ranging from classical and foundational work through current developments. - Presents coherent summaries of risk and uncertainty that inform major areas in economics and finance - Divides coverage between theoretical, empirical, and experimental findings - Makes the economics of risk and uncertainty accessible to scholars in fields outside economics
Download or read book Contemporary Bayesian Econometrics and Statistics written by John Geweke and published by John Wiley & Sons. This book was released on 2005-10-03 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Tools to improve decision making in an imperfect world This publication provides readers with a thorough understanding of Bayesian analysis that is grounded in the theory of inference and optimal decision making. Contemporary Bayesian Econometrics and Statistics provides readers with state-of-the-art simulation methods and models that are used to solve complex real-world problems. Armed with a strong foundation in both theory and practical problem-solving tools, readers discover how to optimize decision making when faced with problems that involve limited or imperfect data. The book begins by examining the theoretical and mathematical foundations of Bayesian statistics to help readers understand how and why it is used in problem solving. The author then describes how modern simulation methods make Bayesian approaches practical using widely available mathematical applications software. In addition, the author details how models can be applied to specific problems, including: * Linear models and policy choices * Modeling with latent variables and missing data * Time series models and prediction * Comparison and evaluation of models The publication has been developed and fine- tuned through a decade of classroom experience, and readers will find the author's approach very engaging and accessible. There are nearly 200 examples and exercises to help readers see how effective use of Bayesian statistics enables them to make optimal decisions. MATLAB? and R computer programs are integrated throughout the book. An accompanying Web site provides readers with computer code for many examples and datasets. This publication is tailored for research professionals who use econometrics and similar statistical methods in their work. With its emphasis on practical problem solving and extensive use of examples and exercises, this is also an excellent textbook for graduate-level students in a broad range of fields, including economics, statistics, the social sciences, business, and public policy.
Download or read book Bayesian Methods in Health Economics written by Gianluca Baio and published by CRC Press. This book was released on 2012-11-12 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: Health economics is concerned with the study of the cost-effectiveness of health care interventions. This book provides an overview of Bayesian methods for the analysis of health economic data. After an introduction to the basic economic concepts and methods of evaluation, it presents Bayesian statistics using accessible mathematics. The next chapters describe the theory and practice of cost-effectiveness analysis from a statistical viewpoint, and Bayesian computation, notably MCMC. The final chapter presents three detailed case studies covering cost-effectiveness analyses using individual data from clinical trials, evidence synthesis and hierarchical models and Markov models. The text uses WinBUGS and JAGS with datasets and code available online.
Download or read book The Oxford Handbook of Bayesian Econometrics written by John Geweke and published by Oxford University Press. This book was released on 2011-09-29 with total page 576 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian econometric methods have enjoyed an increase in popularity in recent years. Econometricians, empirical economists, and policymakers are increasingly making use of Bayesian methods. This handbook is a single source for researchers and policymakers wanting to learn about Bayesian methods in specialized fields, and for graduate students seeking to make the final step from textbook learning to the research frontier. It contains contributions by leading Bayesians on the latest developments in their specific fields of expertise. The volume provides broad coverage of the application of Bayesian econometrics in the major fields of economics and related disciplines, including macroeconomics, microeconomics, finance, and marketing. It reviews the state of the art in Bayesian econometric methodology, with chapters on posterior simulation and Markov chain Monte Carlo methods, Bayesian nonparametric techniques, and the specialized tools used by Bayesian time series econometricians such as state space models and particle filtering. It also includes chapters on Bayesian principles and methodology.
Download or read book Ignorance and Uncertainty written by Olivier Compte and published by Cambridge University Press. This book was released on 2019 with total page 303 pages. Available in PDF, EPUB and Kindle. Book excerpt: Proposes novel methods to incorporate ignorance and uncertainty into economic modeling without complex mathematics.
Download or read book Introduction to Bayesian Econometrics written by Edward Greenberg and published by Cambridge University Press. This book was released on 2013 with total page 271 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook explains the basic ideas of subjective probability and shows how subjective probabilities must obey the usual rules of probability to ensure coherency. It defines the likelihood function, prior distributions and posterior distributions. It explains how posterior distributions are the basis for inference and explores their basic properties. Various methods of specifying prior distributions are considered, with special emphasis on subject-matter considerations and exchange ability. The regression model is examined to show how analytical methods may fail in the derivation of marginal posterior distributions. The remainder of the book is concerned with applications of the theory to important models that are used in economics, political science, biostatistics and other applied fields. New to the second edition is a chapter on semiparametric regression and new sections on the ordinal probit, item response, factor analysis, ARCH-GARCH and stochastic volatility models. The new edition also emphasizes the R programming language.
Download or read book Coherent Stress Testing written by Riccardo Rebonato and published by John Wiley & Sons. This book was released on 2010-06-10 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: In Coherent Stress Testing: A Bayesian Approach, industry expert Riccardo Rebonato presents a groundbreaking new approach to this important but often undervalued part of the risk management toolkit. Based on the author's extensive work, research and presentations in the area, the book fills a gap in quantitative risk management by introducing a new and very intuitively appealing approach to stress testing based on expert judgement and Bayesian networks. It constitutes a radical departure from the traditional statistical methodologies based on Economic Capital or Extreme-Value-Theory approaches. The book is split into four parts. Part I looks at stress testing and at its role in modern risk management. It discusses the distinctions between risk and uncertainty, the different types of probability that are used in risk management today and for which tasks they are best used. Stress testing is positioned as a bridge between the statistical areas where VaR can be effective and the domain of total Keynesian uncertainty. Part II lays down the quantitative foundations for the concepts described in the rest of the book. Part III takes readers through the application of the tools discussed in part II, and introduces two different systematic approaches to obtaining a coherent stress testing output that can satisfy the needs of industry users and regulators. In part IV the author addresses more practical questions such as embedding the suggestions of the book into a viable governance structure.
Download or read book Risk Analysis in Theory and Practice written by Jean-Paul Chavas and published by Elsevier. This book was released on 2004-07-01 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: The objective of Risk Analysis in Theory and Practice is to present this analytical framework and to illustrate how it can be used in the investigation of economic decisions under risk. In a sense, the economics of risk is a difficult subject: it involves understanding human decisions in the absence of perfect information. How do we make decisions when we do not know some of events affecting us? The complexities of our uncertain world and of how humans obtain and process information make this difficult. In spite of these difficulties, much progress has been made. First, probability theory is the corner stone of risk assessment. This allows us to measure risk in a fashion that can be communicated among decision makers or researchers. Second, risk preferences are now better understood. This provides useful insights into the economic rationality of decision making under uncertainty. Third, over the last decades, good insights have been developed about the value of information. This helps better understand the role of information in human decision making and this book provides a systematic treatment of these issues in the context of both private and public decisions under uncertainty. - Balanced treatment of conceptual models and applied analysis - Considers both private and public decisions under uncertainty - Website presents application exercises in Excel
Download or read book Robust Bayesian Analysis written by David Rios Insua and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: Robust Bayesian analysis aims at overcoming the traditional objection to Bayesian analysis of its dependence on subjective inputs, mainly the prior and the loss. Its purpose is the determination of the impact of the inputs to a Bayesian analysis (the prior, the loss and the model) on its output when the inputs range in certain classes. If the impact is considerable, there is sensitivity and we should attempt to further refine the information the incumbent classes available, perhaps through additional constraints on and/ or obtaining additional data; if the impact is not important, robustness holds and no further analysis and refinement would be required. Robust Bayesian analysis has been widely accepted by Bayesian statisticians; for a while it was even a main research topic in the field. However, to a great extent, their impact is yet to be seen in applied settings. This volume, therefore, presents an overview of the current state of robust Bayesian methods and their applications and identifies topics of further in terest in the area. The papers in the volume are divided into nine parts covering the main aspects of the field. The first one provides an overview of Bayesian robustness at a non-technical level. The paper in Part II con cerns foundational aspects and describes decision-theoretical axiomatisa tions leading to the robust Bayesian paradigm, motivating reasons for which robust analysis is practically unavoidable within Bayesian analysis.