Download or read book Basic Structures of Function Field Arithmetic written by David Goss and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the reviews:"The book...is a thorough and very readable introduction to the arithmetic of function fields of one variable over a finite field, by an author who has made fundamental contributions to the field. It serves as a definitive reference volume, as well as offering graduate students with a solid understanding of algebraic number theory the opportunity to quickly reach the frontiers of knowledge in an important area of mathematics...The arithmetic of function fields is a universe filled with beautiful surprises, in which familiar objects from classical number theory reappear in new guises, and in which entirely new objects play important roles. Goss'clear exposition and lively style make this book an excellent introduction to this fascinating field." MR 97i:11062
Download or read book Basic Structures of Function Field Arithmetic written by David Goss and published by Springer Science & Business Media. This book was released on 1997-11-18 with total page 444 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the reviews:"The book...is a thorough and very readable introduction to the arithmetic of function fields of one variable over a finite field, by an author who has made fundamental contributions to the field. It serves as a definitive reference volume, as well as offering graduate students with a solid understanding of algebraic number theory the opportunity to quickly reach the frontiers of knowledge in an important area of mathematics...The arithmetic of function fields is a universe filled with beautiful surprises, in which familiar objects from classical number theory reappear in new guises, and in which entirely new objects play important roles. Goss'clear exposition and lively style make this book an excellent introduction to this fascinating field." MR 97i:11062
Download or read book Function Field Arithmetic written by Dinesh S. Thakur and published by World Scientific. This book was released on 2004 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an exposition of function field arithmetic withemphasis on recent developments concerning Drinfeld modules, thearithmetic of special values of transcendental functions (such as zetaand gamma functions and their interpolations), diophantineapproximation and related interesting open problems.
Download or read book Field Arithmetic written by Michael D. Fried and published by Springer Science & Business Media. This book was released on 2005 with total page 812 pages. Available in PDF, EPUB and Kindle. Book excerpt: Field Arithmetic explores Diophantine fields through their absolute Galois groups. This largely self-contained treatment starts with techniques from algebraic geometry, number theory, and profinite groups. Graduate students can effectively learn generalizations of finite field ideas. We use Haar measure on the absolute Galois group to replace counting arguments. New Chebotarev density variants interpret diophantine properties. Here we have the only complete treatment of Galois stratifications, used by Denef and Loeser, et al, to study Chow motives of Diophantine statements. Progress from the first edition starts by characterizing the finite-field like P(seudo)A(lgebraically)C(losed) fields. We once believed PAC fields were rare. Now we know they include valuable Galois extensions of the rationals that present its absolute Galois group through known groups. PAC fields have projective absolute Galois group. Those that are Hilbertian are characterized by this group being pro-free. These last decade results are tools for studying fields by their relation to those with projective absolute group. There are still mysterious problems to guide a new generation: Is the solvable closure of the rationals PAC; and do projective Hilbertian fields have pro-free absolute Galois group (includes Shafarevich's conjecture)?
Download or read book Function Field Arithmetic written by Dinesh S. Thakur and published by World Scientific. This book was released on 2004 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an exposition of function field arithmetic with emphasis on recent developments concerning Drinfeld modules, the arithmetic of special values of transcendental functions (such as zeta and gamma functions and their interpolations), diophantine approximation and related interesting open problems. While it covers many topics treated in 'Basic Structures of Function Field Arithmetic' by David Goss, it complements that book with the inclusion of recent developments as well as the treatment of new topics such as diophantine approximation, hypergeometric functions, modular forms, transcendence, automata and solitons. There is also new work on multizeta values and log-algebraicity. The author has included numerous worked-out examples. Many open problems, which can serve as good thesis problems, are discussed.
Download or read book Arithmetic Geometry over Global Function Fields written by Gebhard Böckle and published by Springer. This book was released on 2014-11-13 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume collects the texts of five courses given in the Arithmetic Geometry Research Programme 2009-2010 at the CRM Barcelona. All of them deal with characteristic p global fields; the common theme around which they are centered is the arithmetic of L-functions (and other special functions), investigated in various aspects. Three courses examine some of the most important recent ideas in the positive characteristic theory discovered by Goss (a field in tumultuous development, which is seeing a number of spectacular advances): they cover respectively crystals over function fields (with a number of applications to L-functions of t-motives), gamma and zeta functions in characteristic p, and the binomial theorem. The other two are focused on topics closer to the classical theory of abelian varieties over number fields: they give respectively a thorough introduction to the arithmetic of Jacobians over function fields (including the current status of the BSD conjecture and its geometric analogues, and the construction of Mordell-Weil groups of high rank) and a state of the art survey of Geometric Iwasawa Theory explaining the recent proofs of various versions of the Main Conjecture, in the commutative and non-commutative settings.
Download or read book Number Fields and Function Fields Two Parallel Worlds written by Gerard B. M. van der Geer and published by Springer Science & Business Media. This book was released on 2006-11-24 with total page 323 pages. Available in PDF, EPUB and Kindle. Book excerpt: Invited articles by leading researchers explore various aspects of the parallel worlds of function fields and number fields Topics range from Arakelov geometry, the search for a theory of varieties over the field with one element, via Eisenstein series to Drinfeld modules, and t-motives Aimed at graduate students, mathematicians, and researchers interested in geometry and arithmetic and their connections
Download or read book Arithmetic and Geometry over Local Fields written by Bruno Anglès and published by Springer Nature. This book was released on 2021-03-03 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume introduces some recent developments in Arithmetic Geometry over local fields. Its seven chapters are centered around two common themes: the study of Drinfeld modules and non-Archimedean analytic geometry. The notes grew out of lectures held during the research program "Arithmetic and geometry of local and global fields" which took place at the Vietnam Institute of Advanced Study in Mathematics (VIASM) from June to August 2018. The authors, leading experts in the field, have put great effort into making the text as self-contained as possible, introducing the basic tools of the subject. The numerous concrete examples and suggested research problems will enable graduate students and young researchers to quickly reach the frontiers of this fascinating branch of mathematics.
Download or read book Algebraic Function Fields and Codes written by Henning Stichtenoth and published by Springer Science & Business Media. This book was released on 2009-02-11 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book links two subjects: algebraic geometry and coding theory. It uses a novel approach based on the theory of algebraic function fields. Coverage includes the Riemann-Rock theorem, zeta functions and Hasse-Weil's theorem as well as Goppa' s algebraic-geometric codes and other traditional codes. It will be useful to researchers in algebraic geometry and coding theory and computer scientists and engineers in information transmission.
Download or read book Number Theory in Function Fields written by Michael Rosen and published by Springer Science & Business Media. This book was released on 2013-04-18 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: Early in the development of number theory, it was noticed that the ring of integers has many properties in common with the ring of polynomials over a finite field. The first part of this book illustrates this relationship by presenting analogues of various theorems. The later chapters probe the analogy between global function fields and algebraic number fields. Topics include the ABC-conjecture, Brumer-Stark conjecture, and Drinfeld modules.
Download or read book Topics in the Theory of Algebraic Function Fields written by Gabriel Daniel Villa Salvador and published by Springer Science & Business Media. This book was released on 2007-10-10 with total page 658 pages. Available in PDF, EPUB and Kindle. Book excerpt: The fields of algebraic functions of one variable appear in several areas of mathematics: complex analysis, algebraic geometry, and number theory. This text adopts the latter perspective by applying an arithmetic-algebraic viewpoint to the study of function fields as part of the algebraic theory of numbers. The examination explains both the similarities and fundamental differences between function fields and number fields, including many exercises and examples to enhance understanding and motivate further study. The only prerequisites are a basic knowledge of field theory, complex analysis, and some commutative algebra.
Download or read book Arithmetic of L functions written by Cristian Popescu and published by American Mathematical Soc.. This book was released on with total page 517 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Noncommutative Iwasawa Main Conjectures over Totally Real Fields written by John Coates and published by Springer Science & Business Media. This book was released on 2012-10-19 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: The algebraic techniques developed by Kakde will almost certainly lead eventually to major progress in the study of congruences between automorphic forms and the main conjectures of non-commutative Iwasawa theory for many motives. Non-commutative Iwasawa theory has emerged dramatically over the last decade, culminating in the recent proof of the non-commutative main conjecture for the Tate motive over a totally real p-adic Lie extension of a number field, independently by Ritter and Weiss on the one hand, and Kakde on the other. The initial ideas for giving a precise formulation of the non-commutative main conjecture were discovered by Venjakob, and were then systematically developed in the subsequent papers by Coates-Fukaya-Kato-Sujatha-Venjakob and Fukaya-Kato. There was also parallel related work in this direction by Burns and Flach on the equivariant Tamagawa number conjecture. Subsequently, Kato discovered an important idea for studying the K_1 groups of non-abelian Iwasawa algebras in terms of the K_1 groups of the abelian quotients of these Iwasawa algebras. Kakde's proof is a beautiful development of these ideas of Kato, combined with an idea of Burns, and essentially reduces the study of the non-abelian main conjectures to abelian ones. The approach of Ritter and Weiss is more classical, and partly inspired by techniques of Frohlich and Taylor. Since many of the ideas in this book should eventually be applicable to other motives, one of its major aims is to provide a self-contained exposition of some of the main general themes underlying these developments. The present volume will be a valuable resource for researchers working in both Iwasawa theory and the theory of automorphic forms.
Download or read book Arithmetic Geometry Cryptography and Coding Theory 2021 written by Samuele Anni and published by American Mathematical Society. This book was released on 2022-07-06 with total page 198 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the 18th International Conference on Arithmetic, Geometry, Cryptography, and Coding Theory, held (online) from May 31 to June 4, 2021. For over thirty years, the biennial international conference AGC$^2$T (Arithmetic, Geometry, Cryptography, and Coding Theory) has brought researchers together to forge connections between arithmetic geometry and its applications to coding theory and to cryptography. The papers illustrate the fruitful interaction between abstract theory and explicit computations, covering a large range of topics, including Belyi maps, Galois representations attached to elliptic curves, reconstruction of curves from their Jacobians, isogeny graphs of abelian varieties, hypergeometric equations, and Drinfeld modules.
Download or read book Encyclopaedia of Mathematics written by Michiel Hazewinkel and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 639 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the second supplementary volume to Kluwer's highly acclaimed eleven-volume Encyclopaedia of Mathematics. This additional volume contains nearly 500 new entries written by experts and covers developments and topics not included in the previous volumes. These entries are arranged alphabetically throughout and a detailed index is included. This supplementary volume enhances the existing eleven volumes, and together these twelve volumes represent the most authoritative, comprehensive and up-to-date Encyclopaedia of Mathematics available.
Download or read book Arithmetic and Geometry Around Hypergeometric Functions written by Rolf-Peter Holzapfel and published by Springer Science & Business Media. This book was released on 2007-06-28 with total page 441 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume comprises lecture notes, survey and research articles originating from the CIMPA Summer School Arithmetic and Geometry around Hypergeometric Functions held at Galatasaray University, Istanbul, June 13-25, 2005. It covers a wide range of topics related to hypergeometric functions, thus giving a broad perspective of the state of the art in the field.
Download or read book Ultrametric Functional Analysis written by Bertin Diarra and published by American Mathematical Soc.. This book was released on 2005 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: With contributions by leading mathematicians, this proceedings volume reflects the program of the Eighth International Conference on $p$-adic Functional Analysis held at Blaise Pascal University (Clermont-Ferrand, France). Articles in the book offer a comprehensive overview of research in the area. A wide range of topics are covered, including basic ultrametric functional analysis, topological vector spaces, measure and integration, Choquet theory, Banach and topological algebras,analytic functions (in particular, in connection with algebraic geometry), roots of rational functions and Frobenius structure in $p$-adic differential equations, and $q$-ultrametric calculus. The material is suitable for graduate students and researchers interested in number theory, functionalanalysis, and algebra.