Download or read book Exam Ref 70 774 Perform Cloud Data Science with Azure Machine Learning written by Ginger Grant and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Predictive Analytics with Microsoft Azure Machine Learning written by Valentine Fontama and published by Apress. This book was released on 2014-11-25 with total page 178 pages. Available in PDF, EPUB and Kindle. Book excerpt: Data Science and Machine Learning are in high demand, as customers are increasingly looking for ways to glean insights from all their data. More customers now realize that Business Intelligence is not enough as the volume, speed and complexity of data now defy traditional analytics tools. While Business Intelligence addresses descriptive and diagnostic analysis, Data Science unlocks new opportunities through predictive and prescriptive analysis. The purpose of this book is to provide a gentle and instructionally organized introduction to the field of data science and machine learning, with a focus on building and deploying predictive models. The book also provides a thorough overview of the Microsoft Azure Machine Learning service using task oriented descriptions and concrete end-to-end examples, sufficient to ensure the reader can immediately begin using this important new service. It describes all aspects of the service from data ingress to applying machine learning and evaluating the resulting model, to deploying the resulting model as a machine learning web service. Finally, this book attempts to have minimal dependencies, so that you can fairly easily pick and choose chapters to read. When dependencies do exist, they are listed at the start and end of the chapter. The simplicity of this new service from Microsoft will help to take Data Science and Machine Learning to a much broader audience than existing products in this space. Learn how you can quickly build and deploy sophisticated predictive models as machine learning web services with the new Azure Machine Learning service from Microsoft.
Download or read book Visual Studio 2019 Tricks and Techniques written by Paul Schroeder and published by Packt Publishing Ltd. This book was released on 2021-01-15 with total page 386 pages. Available in PDF, EPUB and Kindle. Book excerpt: Harness the full power of the Visual Studio IDE to take your coding skills to the next level by learning about IDE productivity practices and exclusive techniques Key FeaturesIncrease your productivity by leveraging Visual Studio 2019's improvements and featuresExplore powerful editing, code intelligence, and source code control features to increase productivityDelve into VS’s powerful, untapped features such as custom project templates and extensionsBook Description Visual Studio 2019 (VS 2019) and Visual Studio Code (VS Code) are powerful professional development tools that help you to develop applications for any platform with ease. Whether you want to create web, mobile, or desktop applications, Microsoft Visual Studio is your one-stop solution. This book demonstrates some of the most sophisticated capabilities of the tooling and shows you how to use the integrated development environment (IDE) more efficiently to be more productive. You’ll begin by gradually building on concepts, starting with the basics. The introductory chapters cover shortcuts, snippets, and numerous optimization tricks, along with debugging techniques, source control integration, and other important IDE features that will help you make your time more productive. With that groundwork in place, more advanced concepts such as the inner workings of project and item templates are covered. You will also learn how to write quality, secure code more efficiently as well as discover how certain Visual Studio features work 'under the hood'. By the end of this Visual Studio book, you’ll have learned how to write more secure code faster than ever using your knowledge of the extensions and processes that make developing successful solutions more enjoyable and repeatable. What you will learnUnderstand the similarities and differences between VS 2019 and VS CodeGet to grips with numerous keyboard shortcuts to improve efficiencyDiscover IDE tips and tricks that make it easier to write codeExperiment with code snippets that make it easier to write repeating code patternsFind out how to customize project and item templates with the help of hands-on exercisesUse Visual Studio extensions for ease and improved productivityDelve into Visual Studio’s behind the scene operationsWho this book is for This book is for C# and .NET developers who want to become more efficient and take advantage of features they may not be aware of in the IDE. Those looking to increase their productivity and write quality code more quickly by fully utilizing the power of the Visual Studio IDE will also find this book useful.
Download or read book Introducing Machine Learning written by Dino Esposito and published by Microsoft Press. This book was released on 2020-01-31 with total page 617 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master machine learning concepts and develop real-world solutions Machine learning offers immense opportunities, and Introducing Machine Learning delivers practical knowledge to make the most of them. Dino and Francesco Esposito start with a quick overview of the foundations of artificial intelligence and the basic steps of any machine learning project. Next, they introduce Microsoft’s powerful ML.NET library, including capabilities for data processing, training, and evaluation. They present families of algorithms that can be trained to solve real-life problems, as well as deep learning techniques utilizing neural networks. The authors conclude by introducing valuable runtime services available through the Azure cloud platform and consider the long-term business vision for machine learning. · 14-time Microsoft MVP Dino Esposito and Francesco Esposito help you · Explore what’s known about how humans learn and how intelligent software is built · Discover which problems machine learning can address · Understand the machine learning pipeline: the steps leading to a deliverable model · Use AutoML to automatically select the best pipeline for any problem and dataset · Master ML.NET, implement its pipeline, and apply its tasks and algorithms · Explore the mathematical foundations of machine learning · Make predictions, improve decision-making, and apply probabilistic methods · Group data via classification and clustering · Learn the fundamentals of deep learning, including neural network design · Leverage AI cloud services to build better real-world solutions faster About This Book · For professionals who want to build machine learning applications: both developers who need data science skills and data scientists who need relevant programming skills · Includes examples of machine learning coding scenarios built using the ML.NET library
Download or read book Automated Machine Learning with Microsoft Azure written by Dennis Michael Sawyers and published by Packt Publishing Ltd. This book was released on 2021-04-23 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: A practical, step-by-step guide to using Microsoft's AutoML technology on the Azure Machine Learning service for developers and data scientists working with the Python programming language Key FeaturesCreate, deploy, productionalize, and scale automated machine learning solutions on Microsoft AzureImprove the accuracy of your ML models through automatic data featurization and model trainingIncrease productivity in your organization by using artificial intelligence to solve common problemsBook Description Automated Machine Learning with Microsoft Azure will teach you how to build high-performing, accurate machine learning models in record time. It will equip you with the knowledge and skills to easily harness the power of artificial intelligence and increase the productivity and profitability of your business. Guided user interfaces (GUIs) enable both novices and seasoned data scientists to easily train and deploy machine learning solutions to production. Using a careful, step-by-step approach, this book will teach you how to use Azure AutoML with a GUI as well as the AzureML Python software development kit (SDK). First, you'll learn how to prepare data, train models, and register them to your Azure Machine Learning workspace. You'll then discover how to take those models and use them to create both automated batch solutions using machine learning pipelines and real-time scoring solutions using Azure Kubernetes Service (AKS). Finally, you will be able to use AutoML on your own data to not only train regression, classification, and forecasting models but also use them to solve a wide variety of business problems. By the end of this Azure book, you'll be able to show your business partners exactly how your ML models are making predictions through automatically generated charts and graphs, earning their trust and respect. What you will learnUnderstand how to train classification, regression, and forecasting ML algorithms with Azure AutoMLPrepare data for Azure AutoML to ensure smooth model training and deploymentAdjust AutoML configuration settings to make your models as accurate as possibleDetermine when to use a batch-scoring solution versus a real-time scoring solutionProductionalize your AutoML and discover how to quickly deliver valueCreate real-time scoring solutions with AutoML and Azure Kubernetes ServiceTrain a large number of AutoML models at once using the AzureML Python SDKWho this book is for Data scientists, aspiring data scientists, machine learning engineers, or anyone interested in applying artificial intelligence or machine learning in their business will find this machine learning book useful. You need to have beginner-level knowledge of artificial intelligence and a technical background in computer science, statistics, or information technology before getting started. Familiarity with Python will help you implement the more advanced features found in the chapters, but even data analysts and SQL experts will be able to train ML models after finishing this book.
Download or read book SQL Server 2019 Administration Inside Out written by Randolph West and published by Microsoft Press. This book was released on 2020-03-11 with total page 1720 pages. Available in PDF, EPUB and Kindle. Book excerpt: Conquer SQL Server 2019 administration–from the inside out Dive into SQL Server 2019 administration–and really put your SQL Server DBA expertise to work. This supremely organized reference packs hundreds of timesaving solutions, tips, and workarounds–all you need to plan, implement, manage, and secure SQL Server 2019 in any production environment: on-premises, cloud, or hybrid. Six experts thoroughly tour DBA capabilities available in SQL Server 2019 Database Engine, SQL Server Data Tools, SQL Server Management Studio, PowerShell, and Azure Portal. You’ll find extensive new coverage of Azure SQL, big data clusters, PolyBase, data protection, automation, and more. Discover how experts tackle today’s essential tasks–and challenge yourself to new levels of mastery. Explore SQL Server 2019’s toolset, including the improved SQL Server Management Studio, Azure Data Studio, and Configuration Manager Design, implement, manage, and govern on-premises, hybrid, or Azure database infrastructures Install and configure SQL Server on Windows and Linux Master modern maintenance and monitoring with extended events, Resource Governor, and the SQL Assessment API Automate tasks with maintenance plans, PowerShell, Policy-Based Management, and more Plan and manage data recovery, including hybrid backup/restore, Azure SQL Database recovery, and geo-replication Use availability groups for high availability and disaster recovery Protect data with Transparent Data Encryption, Always Encrypted, new Certificate Management capabilities, and other advances Optimize databases with SQL Server 2019’s advanced performance and indexing features Provision and operate Azure SQL Database and its managed instances Move SQL Server workloads to Azure: planning, testing, migration, and post-migration
Download or read book Getting started with Power Query in Power BI and Excel written by Reza Rad and published by RADACAD Systems Limited. This book was released on 2021-08-27 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: Any data analytics solution requires data population and preparation. With the rise of data analytics solutions these years, the need for this data preparation becomes even more essential. Power BI is a helpful data analytics tool that is used worldwide by many users. As a Power BI (or Microsoft BI) developer, it is essential to learn how to prepare the data in the right shape and format needed. You need to learn how to clean the data and build it in the structure that can be modeled easily and used high performant for visualization. Data preparation and transformation is the backend work. If you consider building a BI system as going to a restaurant and ordering food. The visualization is the food you see on the table nicely presented. The quality, the taste, and everything else comes from the hard work in the kitchen. The part that you don’t see or the backend in the world of Power BI is Power Query. You may be already familiar with some other data preparation and data transformation technologies, such as T-SQL, SSIS, Azure Data Factory, Informatica, etc. Power Query is a data transformation engine capable of preparing the data in the format you need. The good news is that to learn Power Query; you don’t need to know programming. Power Query is for citizen data engineers. However, this doesn’t mean that Power Query is not capable of performing advanced transformation. Unfortunately, because Power Query and data preparation is the kitchen work of the BI system, many Power BI users skip the learning of it and become aware of it somewhere along their BI project. Once they get familiar with it, they realize there are tons of things they could have implemented easier, faster, and in a much more maintainable way using Power Query. In other words, they learn mastering Power Query is the key skill toward mastering Power BI. We have been working with Power Query since the very early release of that in 2013, named Data Explorer, and wrote blog articles and published videos about it. The number of articles we published under this subject easily exceeds hundreds. Through those articles, some of the fundamentals and key learnings of Power Query are explained. We thought it is good to compile some of them in a book. A good analytics solution combines a good data model, good data preparation, and good analytics and calculations. Reza has written another book about the Basics of modeling in Power BI and a book on Power BI DAX Simplified. This book is covering the data preparation and transformations aspects of it. This book is for you if you are building a Power BI solution. Even if you are just visualizing the data, preparation and transformations are an essential part of analytics. You do need to have the cleaned and prepared data ready before visualizing it. This book is complied into a series of two books, which will be followed by a third book later; Getting started with Power Query in Power BI and Excel (this book) Mastering Power Query in Power BI and Excel (already available to be purchased separately) Power Query dataflows (will be published later) Although this book is written for Power BI and all the examples are presented using the Power BI. However, the examples can be easily applied to Excel, Dataflows, and other tools and services using Power Query.
Download or read book Microsoft Azure Essentials Fundamentals of Azure written by Michael Collier and published by Microsoft Press. This book was released on 2015-01-29 with total page 400 pages. Available in PDF, EPUB and Kindle. Book excerpt: Microsoft Azure Essentials from Microsoft Press is a series of free ebooks designed to help you advance your technical skills with Microsoft Azure. The first ebook in the series, Microsoft Azure Essentials: Fundamentals of Azure, introduces developers and IT professionals to the wide range of capabilities in Azure. The authors - both Microsoft MVPs in Azure - present both conceptual and how-to content for key areas, including: Azure Websites and Azure Cloud Services Azure Virtual Machines Azure Storage Azure Virtual Networks Databases Azure Active Directory Management tools Business scenarios Watch Microsoft Press’s blog and Twitter (@MicrosoftPress) to learn about other free ebooks in the “Microsoft Azure Essentials” series.
Download or read book Hands On Machine Learning with Microsoft Excel 2019 written by Julio Cesar Rodriguez Martino and published by Packt Publishing Ltd. This book was released on 2019-04-30 with total page 243 pages. Available in PDF, EPUB and Kindle. Book excerpt: A practical guide to getting the most out of Excel, using it for data preparation, applying machine learning models (including cloud services) and understanding the outcome of the data analysis. Key FeaturesUse Microsoft's product Excel to build advanced forecasting models using varied examples Cover range of machine learning tasks such as data mining, data analytics, smart visualization, and more Derive data-driven techniques using Excel plugins and APIs without much code required Book Description We have made huge progress in teaching computers to perform difficult tasks, especially those that are repetitive and time-consuming for humans. Excel users, of all levels, can feel left behind by this innovation wave. The truth is that a large amount of the work needed to develop and use a machine learning model can be done in Excel. The book starts by giving a general introduction to machine learning, making every concept clear and understandable. Then, it shows every step of a machine learning project, from data collection, reading from different data sources, developing models, and visualizing the results using Excel features and offerings. In every chapter, there are several examples and hands-on exercises that will show the reader how to combine Excel functions, add-ins, and connections to databases and to cloud services to reach the desired goal: building a full data analysis flow. Different machine learning models are shown, tailored to the type of data to be analyzed. At the end of the book, the reader is presented with some advanced use cases using Automated Machine Learning, and artificial neural network, which simplifies the analysis task and represents the future of machine learning. What you will learnUse Excel to preview and cleanse datasetsUnderstand correlations between variables and optimize the input to machine learning modelsUse and evaluate different machine learning models from ExcelUnderstand the use of different visualizationsLearn the basic concepts and calculations to understand how artificial neural networks workLearn how to connect Excel to the Microsoft Azure cloudGet beyond proof of concepts and build fully functional data analysis flowsWho this book is for This book is for data analysis, machine learning enthusiasts, project managers, and someone who doesn't want to code much for performing core tasks of machine learning. Each example will help you perform end-to-end smart analytics. Working knowledge of Excel is required.
Download or read book Deep Learning with Azure written by Mathew Salvaris and published by Apress. This book was released on 2018-08-24 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: Get up-to-speed with Microsoft's AI Platform. Learn to innovate and accelerate with open and powerful tools and services that bring artificial intelligence to every data scientist and developer. Artificial Intelligence (AI) is the new normal. Innovations in deep learning algorithms and hardware are happening at a rapid pace. It is no longer a question of should I build AI into my business, but more about where do I begin and how do I get started with AI? Written by expert data scientists at Microsoft, Deep Learning with the Microsoft AI Platform helps you with the how-to of doing deep learning on Azure and leveraging deep learning to create innovative and intelligent solutions. Benefit from guidance on where to begin your AI adventure, and learn how the cloud provides you with all the tools, infrastructure, and services you need to do AI. What You'll Learn Become familiar with the tools, infrastructure, and services available for deep learning on Microsoft Azure such as Azure Machine Learning services and Batch AI Use pre-built AI capabilities (Computer Vision, OCR, gender, emotion, landmark detection, and more) Understand the common deep learning models, including convolutional neural networks (CNNs), recurrent neural networks (RNNs), generative adversarial networks (GANs) with sample code and understand how the field is evolving Discover the options for training and operationalizing deep learning models on Azure Who This Book Is For Professional data scientists who are interested in learning more about deep learning and how to use the Microsoft AI platform. Some experience with Python is helpful.
Download or read book SQL Server 2019 Administrator s Guide written by Marek Chmel and published by Packt Publishing Ltd. This book was released on 2020-09-11 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: Use Microsoft SQL Server 2019 to implement, administer, and secure a robust database solution that is disaster-proof and highly available Key FeaturesExplore new features of SQL Server 2019 to set up, administer, and maintain your database solution successfullyDevelop a dynamic SQL Server environment and streamline big data pipelinesDiscover best practices for fixing performance issues, database access management, replication, and securityBook Description SQL Server is one of the most popular relational database management systems developed by Microsoft. This second edition of the SQL Server Administrator's Guide will not only teach you how to administer an enterprise database, but also help you become proficient at managing and keeping the database available, secure, and stable. You’ll start by learning how to set up your SQL Server and configure new and existing environments for optimal use. The book then takes you through designing aspects and delves into performance tuning by showing you how to use indexes effectively. You’ll understand certain choices that need to be made about backups, implement security policy, and discover how to keep your environment healthy. Tools available for monitoring and managing a SQL Server database, including automating health reviews, performance checks, and much more, will also be discussed in detail. As you advance, the book covers essential topics such as migration, upgrading, and consolidation, along with the techniques that will help you when things go wrong. Once you’ve got to grips with integration with Azure and streamlining big data pipelines, you’ll learn best practices from industry experts for maintaining a highly reliable database solution. Whether you are an administrator or are looking to get started with database administration, this SQL Server book will help you develop the skills you need to successfully create, design, and deploy database solutions. What you will learnDiscover SQL Server 2019’s new features and how to implement themFix performance issues by optimizing queries and making use of indexesDesign and use an optimal database management strategyCombine SQL Server 2019 with Azure and manage your solution using various automation techniquesImplement efficient backup and recovery techniques in line with security policiesGet to grips with migrating, upgrading, and consolidating with SQL ServerSet up an AlwaysOn-enabled stable and fast SQL Server 2019 environmentUnderstand how to work with Big Data on SQL Server environmentsWho this book is for This book is for database administrators, database developers, and anyone who wants to administer large and multiple databases single-handedly using Microsoft's SQL Server 2019. Basic awareness of database concepts and experience with previous SQL Server versions is required.
Download or read book Artificial Intelligence with Python written by Alberto Artasanchez and published by Packt Publishing Ltd. This book was released on 2020-01-31 with total page 619 pages. Available in PDF, EPUB and Kindle. Book excerpt: New edition of the bestselling guide to artificial intelligence with Python, updated to Python 3.x, with seven new chapters that cover RNNs, AI and Big Data, fundamental use cases, chatbots, and more. Key FeaturesCompletely updated and revised to Python 3.xNew chapters for AI on the cloud, recurrent neural networks, deep learning models, and feature selection and engineeringLearn more about deep learning algorithms, machine learning data pipelines, and chatbotsBook Description Artificial Intelligence with Python, Second Edition is an updated and expanded version of the bestselling guide to artificial intelligence using the latest version of Python 3.x. Not only does it provide you an introduction to artificial intelligence, this new edition goes further by giving you the tools you need to explore the amazing world of intelligent apps and create your own applications. This edition also includes seven new chapters on more advanced concepts of Artificial Intelligence, including fundamental use cases of AI; machine learning data pipelines; feature selection and feature engineering; AI on the cloud; the basics of chatbots; RNNs and DL models; and AI and Big Data. Finally, this new edition explores various real-world scenarios and teaches you how to apply relevant AI algorithms to a wide swath of problems, starting with the most basic AI concepts and progressively building from there to solve more difficult challenges so that by the end, you will have gained a solid understanding of, and when best to use, these many artificial intelligence techniques. What you will learnUnderstand what artificial intelligence, machine learning, and data science areExplore the most common artificial intelligence use casesLearn how to build a machine learning pipelineAssimilate the basics of feature selection and feature engineeringIdentify the differences between supervised and unsupervised learningDiscover the most recent advances and tools offered for AI development in the cloudDevelop automatic speech recognition systems and chatbotsApply AI algorithms to time series dataWho this book is for The intended audience for this book is Python developers who want to build real-world Artificial Intelligence applications. Basic Python programming experience and awareness of machine learning concepts and techniques is mandatory.
Download or read book Hands On Machine Learning with ML NET written by Jarred Capellman and published by Packt Publishing Ltd. This book was released on 2020-03-27 with total page 287 pages. Available in PDF, EPUB and Kindle. Book excerpt: Create, train, and evaluate various machine learning models such as regression, classification, and clustering using ML.NET, Entity Framework, and ASP.NET Core Key FeaturesGet well-versed with the ML.NET framework and its components and APIs using practical examplesLearn how to build, train, and evaluate popular machine learning algorithms with ML.NET offeringsExtend your existing machine learning models by integrating with TensorFlow and other librariesBook Description Machine learning (ML) is widely used in many industries such as science, healthcare, and research and its popularity is only growing. In March 2018, Microsoft introduced ML.NET to help .NET enthusiasts in working with ML. With this book, you’ll explore how to build ML.NET applications with the various ML models available using C# code. The book starts by giving you an overview of ML and the types of ML algorithms used, along with covering what ML.NET is and why you need it to build ML apps. You’ll then explore the ML.NET framework, its components, and APIs. The book will serve as a practical guide to helping you build smart apps using the ML.NET library. You’ll gradually become well versed in how to implement ML algorithms such as regression, classification, and clustering with real-world examples and datasets. Each chapter will cover the practical implementation, showing you how to implement ML within .NET applications. You’ll also learn to integrate TensorFlow in ML.NET applications. Later you’ll discover how to store the regression model housing price prediction result to the database and display the real-time predicted results from the database on your web application using ASP.NET Core Blazor and SignalR. By the end of this book, you’ll have learned how to confidently perform basic to advanced-level machine learning tasks in ML.NET. What you will learnUnderstand the framework, components, and APIs of ML.NET using C#Develop regression models using ML.NET for employee attrition and file classificationEvaluate classification models for sentiment prediction of restaurant reviewsWork with clustering models for file type classificationsUse anomaly detection to find anomalies in both network traffic and login historyWork with ASP.NET Core Blazor to create an ML.NET enabled web applicationIntegrate pre-trained TensorFlow and ONNX models in a WPF ML.NET application for image classification and object detectionWho this book is for If you are a .NET developer who wants to implement machine learning models using ML.NET, then this book is for you. This book will also be beneficial for data scientists and machine learning developers who are looking for effective tools to implement various machine learning algorithms. A basic understanding of C# or .NET is mandatory to grasp the concepts covered in this book effectively.
Download or read book Python Machine Learning written by Wei-Meng Lee and published by John Wiley & Sons. This book was released on 2019-04-04 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: Python makes machine learning easy for beginners and experienced developers With computing power increasing exponentially and costs decreasing at the same time, there is no better time to learn machine learning using Python. Machine learning tasks that once required enormous processing power are now possible on desktop machines. However, machine learning is not for the faint of heart—it requires a good foundation in statistics, as well as programming knowledge. Python Machine Learning will help coders of all levels master one of the most in-demand programming skillsets in use today. Readers will get started by following fundamental topics such as an introduction to Machine Learning and Data Science. For each learning algorithm, readers will use a real-life scenario to show how Python is used to solve the problem at hand. • Python data science—manipulating data and data visualization • Data cleansing • Understanding Machine learning algorithms • Supervised learning algorithms • Unsupervised learning algorithms • Deploying machine learning models Python Machine Learning is essential reading for students, developers, or anyone with a keen interest in taking their coding skills to the next level.
Download or read book Exam Ref AZ 900 Microsoft Azure Fundamentals written by Jim Cheshire and published by Microsoft Press. This book was released on 2022-08-15 with total page 353 pages. Available in PDF, EPUB and Kindle. Book excerpt: Prepare for the updated version of Microsoft Exam AZ-900 and help demonstrate your real-world knowledge of cloud services and how they can be provided with Microsoft Azure, including high-level concepts that apply throughout Azure, and key concepts specific to individual services. Designed for professionals in both non-technical or technical roles, this Exam Ref focuses on the critical thinking and decision-making acumen needed for success at the Microsoft Certified Fundamentals level. Focus on the expertise measured by these objectives: Describe cloud concepts Describe Azure architecture and services Describe Azure management and governance This Microsoft Exam Ref: Organizes its coverage by exam objectives Features strategic, what-if scenarios to challenge you Assumes you want to show foundational knowledge of cloud services and their delivery with Microsoft Azure About the Exam Exam AZ-900 focuses on knowledge needed to describe cloud computing; the benefits of using cloud services; cloud service types; core Azure architectural components; Azure compute, networking, and storage services; Azure identity, access, and security; Azure cost management; Azure features and tools for governance and compliance, and for managing and deploying resources; and Azure monitoring tools. About Microsoft Certification Passing this exam fulfills your requirements for the Microsoft Certified: Azure Fundamentals credential, validating your basic knowledge of cloud services and how those services are provided with Azure. Whether you're new to the fi eld or a seasoned professional, demonstrating this knowledge can help you jump-start your career and prepare you to dive deeper into the many technical opportunities Azure offers.
Download or read book Machine Learning with Go Quick Start Guide written by Michael Bironneau and published by Packt Publishing Ltd. This book was released on 2019-05-31 with total page 159 pages. Available in PDF, EPUB and Kindle. Book excerpt: This quick start guide will bring the readers to a basic level of understanding when it comes to the Machine Learning (ML) development lifecycle, will introduce Go ML libraries and then will exemplify common ML methods such as Classification, Regression, and Clustering Key FeaturesYour handy guide to building machine learning workflows in Go for real-world scenariosBuild predictive models using the popular supervised and unsupervised machine learning techniquesLearn all about deployment strategies and take your ML application from prototype to production readyBook Description Machine learning is an essential part of today's data-driven world and is extensively used across industries, including financial forecasting, robotics, and web technology. This book will teach you how to efficiently develop machine learning applications in Go. The book starts with an introduction to machine learning and its development process, explaining the types of problems that it aims to solve and the solutions it offers. It then covers setting up a frictionless Go development environment, including running Go interactively with Jupyter notebooks. Finally, common data processing techniques are introduced. The book then teaches the reader about supervised and unsupervised learning techniques through worked examples that include the implementation of evaluation metrics. These worked examples make use of the prominent open-source libraries GoML and Gonum. The book also teaches readers how to load a pre-trained model and use it to make predictions. It then moves on to the operational side of running machine learning applications: deployment, Continuous Integration, and helpful advice for effective logging and monitoring. At the end of the book, readers will learn how to set up a machine learning project for success, formulating realistic success criteria and accurately translating business requirements into technical ones. What you will learnUnderstand the types of problem that machine learning solves, and the various approachesImport, pre-process, and explore data with Go to make it ready for machine learning algorithmsVisualize data with gonum/plot and GophernotesDiagnose common machine learning problems, such as overfitting and underfittingImplement supervised and unsupervised learning algorithms using Go librariesBuild a simple web service around a model and use it to make predictionsWho this book is for This book is for developers and data scientists with at least beginner-level knowledge of Go, and a vague idea of what types of problem Machine Learning aims to tackle. No advanced knowledge of Go (and no theoretical understanding of the math that underpins Machine Learning) is required.
Download or read book Enterprise Cloud Strategy written by Barry Briggs and published by Microsoft Press. This book was released on 2016-01-07 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: How do you start? How should you build a plan for cloud migration for your entire portfolio? How will your organization be affected by these changes? This book, based on real-world cloud experiences by enterprise IT teams, seeks to provide the answers to these questions. Here, you’ll see what makes the cloud so compelling to enterprises; with which applications you should start your cloud journey; how your organization will change, and how skill sets will evolve; how to measure progress; how to think about security, compliance, and business buy-in; and how to exploit the ever-growing feature set that the cloud offers to gain strategic and competitive advantage.