EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Automatic Quantum Computer Programming

Download or read book Automatic Quantum Computer Programming written by Lee Spector and published by Springer. This book was released on 2006-10-04 with total page 154 pages. Available in PDF, EPUB and Kindle. Book excerpt: Once realized, the potential of large-scale quantum computers promises to radically transform computer science. Despite large-scale international efforts, however, essential questions about the potential of quantum algorithms are still unanswered. Automatic Quantum Computer Programming is an introduction both to quantum computing for non-physicists and to genetic programming for non-computer-scientists. The book explores several ways in which genetic programming can support automatic quantum computer programming and presents detailed descriptions of specific techniques, along with several examples of their human-competitive performance on specific problems.

Book Automatic Quantum Computer Programming

Download or read book Automatic Quantum Computer Programming written by Lee Spector and published by Springer Science & Business Media. This book was released on 2004-06-11 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: Automatic Quantum Computer Programming provides an introduction to quantum computing for non-physicists, as well as an introduction to genetic programming for non-computer-scientists. The book explores several ways in which genetic programming can support automatic quantum computer programming and presents detailed descriptions of specific techniques, along with several examples of their human-competitive performance on specific problems. Source code for the author’s QGAME quantum computer simulator is included as an appendix, and pointers to additional online resources furnish the reader with an array of tools for automatic quantum computer programming.

Book Automatic Quantum Computer Programming

Download or read book Automatic Quantum Computer Programming written by Lee Spector and published by Springer Science & Business Media. This book was released on 2006-04-18 with total page 158 pages. Available in PDF, EPUB and Kindle. Book excerpt: Automatic Quantum Computer Programming provides an introduction to quantum computing for non-physicists, as well as an introduction to genetic programming for non-computer-scientists. The book explores several ways in which genetic programming can support automatic quantum computer programming and presents detailed descriptions of specific techniques, along with several examples of their human-competitive performance on specific problems. Source code for the author’s QGAME quantum computer simulator is included as an appendix, and pointers to additional online resources furnish the reader with an array of tools for automatic quantum computer programming.

Book Programming Quantum Computers

Download or read book Programming Quantum Computers written by Eric R. Johnston and published by "O'Reilly Media, Inc.". This book was released on 2019-07-03 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum computers are poised to kick-start a new computing revolution—and you can join in right away. If you’re in software engineering, computer graphics, data science, or just an intrigued computerphile, this book provides a hands-on programmer’s guide to understanding quantum computing. Rather than labor through math and theory, you’ll work directly with examples that demonstrate this technology’s unique capabilities. Quantum computing specialists Eric Johnston, Nic Harrigan, and Mercedes Gimeno-Segovia show you how to build the skills, tools, and intuition required to write quantum programs at the center of applications. You’ll understand what quantum computers can do and learn how to identify the types of problems they can solve. This book includes three multichapter sections: Programming for a QPU—Explore core concepts for programming quantum processing units, including how to describe and manipulate qubits and how to perform quantum teleportation. QPU Primitives—Learn algorithmic primitives and techniques, including amplitude amplification, the Quantum Fourier Transform, and phase estimation. QPU Applications—Investigate how QPU primitives are used to build existing applications, including quantum search techniques and Shor’s factoring algorithm.

Book Quantum Computing

    Book Details:
  • Author : Nihal Mehta Ph.D.
  • Publisher : Pragmatic Bookshelf
  • Release : 2020-08-26
  • ISBN : 1680508091
  • Pages : 753 pages

Download or read book Quantum Computing written by Nihal Mehta Ph.D. and published by Pragmatic Bookshelf. This book was released on 2020-08-26 with total page 753 pages. Available in PDF, EPUB and Kindle. Book excerpt: You've heard that quantum computing is going to change the world. Now you can check it out for yourself. Learn how quantum computing works, and write programs that run on the IBM Q quantum computer, one of the world's first functioning quantum computers. Learn a simple way to apply quantum mechanics to computer programming. Create algorithms to solve intractable problems for classical computers, and discover how to explore the entire problem space at once to determine the optimal solution. Get your hands on the future of computing today. Quantum computing overhauls computer science. Problems such as designing life-saving drugs and super-large logistics problems that have been difficult or impossible for classical computers to handle can now be solved in moments. Quantum computing makes it possible to explore all possible solutions simultaneously and determine those that work, instead of iterating through each possibility sequentially. Work with quantum computers directly, instead of talking about them theoretically. Discover a new visual way of looking at quantum bits that makes quantum computing intuitive for computer programmers. Master the special properties that make them different, and more powerful, than classical bits. Control quantum bits with gates and create circuits to model complex problems. Write programs that run on real quantum machines to solve problems that classical computers struggle with. Dive into quantum optimization and cryptography. Get a head start on the technology that will drive computer science into the future. What You Need: Access to the IBM quantum computer, via any internet connection

Book Quantum Computing with Silq Programming

Download or read book Quantum Computing with Silq Programming written by Srinjoy Ganguly and published by Packt Publishing Ltd. This book was released on 2021-04-30 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Learn the mathematics behind quantum computing and explore the high-level quantum language Silq to take your quantum programming skills to the next level Key FeaturesHarness the potential of quantum computers more effectively using SilqLearn how to solve core problems that you may face while writing quantum programsExplore useful quantum applications such as cryptography and quantum machine learningBook Description Quantum computing is a growing field, with many research projects focusing on programming quantum computers in the most efficient way possible. One of the biggest challenges faced with existing languages is that they work on low-level circuit model details and are not able to represent quantum programs accurately. Developed by researchers at ETH Zurich after analyzing languages including Q# and Qiskit, Silq is a high-level programming language that can be viewed as the C++ of quantum computers! Quantum Computing with Silq Programming helps you explore Silq and its intuitive and simple syntax to enable you to describe complex tasks with less code. This book will help you get to grips with the constructs of the Silq and show you how to write quantum programs with it. You’ll learn how to use Silq to program quantum algorithms to solve existing and complex tasks. Using quantum algorithms, you’ll also gain practical experience in useful applications such as quantum error correction, cryptography, and quantum machine learning. Finally, you’ll discover how to optimize the programming of quantum computers with the simple Silq. By the end of this Silq book, you’ll have mastered the features of Silq and be able to build efficient quantum applications independently. What you will learnIdentify the challenges that researchers face in quantum programmingUnderstand quantum computing concepts and learn how to make quantum circuitsExplore Silq programming constructs and use them to create quantum programsUse Silq to code quantum algorithms such as Grover's and Simon’sDiscover the practicalities of quantum error correction with SilqExplore useful applications such as quantum machine learning in a practical wayWho this book is for This Silq quantum computing book is for students, researchers, and scientists looking to learn quantum computing techniques and software development. Quantum computing enthusiasts who want to explore this futuristic technology will also find this book useful. Beginner-level knowledge of any programming language as well as mathematical topics such as linear algebra, probability, complex numbers, and statistics is required.

Book Quantum Computer Science

Download or read book Quantum Computer Science written by Marco Lanzagorta and published by Morgan & Claypool Publishers. This book was released on 2009 with total page 125 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this text we present a technical overview of the emerging field of quantum computation along with new research results by the authors. What distinguishes our presentation from that of others is our focus on the relationship between quantum computation and computer science. Specifically, our emphasis is on the computational model of quantum computing rather than on the engineering issues associated with its physical implementation. We adopt this approach for the same reason that a book on computer programming doesn't cover the theory and physical realization of semiconductors. Another distinguishing feature of this text is our detailed discussion of the circuit complexity of quantum algorithms. To the extent possible we have presented the material in a form that is accessible to the computer scientist, but in many cases we retain the conventional physics notation so that the reader will also be able to consult the relevant quantum computing literature. Although we expect the reader to have a solid understanding of linear algebra, we do not assume a background in physics. This text is based on lectures given as short courses and invited presentations around the world, and it has been used as the primary text for a graduate course at George Mason University. In all these cases our challenge has been the same: how to present to a general audience a concise introduction to the algorithmic structure and applications of quantum computing on an extremely short period of time. The feedback from these courses and presentations has greatly aided in making our exposition of challenging concepts more accessible to a general audience. Table of Contents: Introduction / The Algorithmic Structure of Quantum Computing / Advantages and Limitations of Quantum Computing / Amplitude Amplification / Case Study: Computational Geometry / The Quantum Fourier Transform / Case Study: The Hidden Subgroup / Circuit Complexity Analysis of Quantum Algorithms / Conclusions / Bibliography

Book Foundations of Quantum Programming

Download or read book Foundations of Quantum Programming written by Mingsheng Ying and published by Elsevier. This book was released on 2024-05-01 with total page 474 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quantum computers promise dramatic advantages in processing speed over currently available computer systems. Quantum computing offers great promise in a wide variety of computing and scientific research, including Quantum cryptography, machine learning, computational biology, renewable energy, computer-aided drug design, generative chemistry, and any scientific or enterprise application that requires computation speed or reach beyond the limits of current conventional computer systems. Foundations of Quantum Programming, Second Edition discusses how programming methodologies and technologies developed for current computers can be extended for quantum computers, along with new programming methodologies and technologies that can effectively exploit the unique power of quantum computing. The Second Edition includes two new chapters describing programming models and methodologies for parallel and distributed quantum computers. The author has also included two new chapters to introduce Quantum Machine Learning and its programming models – parameterized and differential quantum programming. In addition, the First Edition's preliminaries chapter has been split into three chapters, with two sections for quantum Turing machines and random access stored program machines added to give the reader a more complete picture of quantum computational models. Finally, several other new techniques are introduced in the Second Edition, including invariants of quantum programs and their generation algorithms, and abstract interpretation of quantum programs. Demystifies the theory of quantum programming using a step-by-step approach Includes methodologies, techniques, and tools for the development, analysis, and verification of quantum programs and quantum cryptographic protocols Covers the interdisciplinary nature of quantum programming by providing preliminaries from quantum mechanics, mathematics, and computer science, and pointing out its potential applications to quantum engineering and physics Presents a coherent and self-contained treatment that will be valuable for academic and industrial researchers and developers Adds new developments such as parallel and distributed quantum programming; and introduces several new program analysis techniques such as invariants generation and abstract interpretation

Book Learn Quantum Computing with Python and Q

Download or read book Learn Quantum Computing with Python and Q written by Sarah C. Kaiser and published by Simon and Schuster. This book was released on 2021-06-22 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: "For software developers. No prior experience with quantum computing required"--Back cover.

Book Practical Quantum Computing for Developers

Download or read book Practical Quantum Computing for Developers written by Vladimir Silva and published by Apress. This book was released on 2018-12-12 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: Write algorithms and program in the new field of quantum computing. This book covers major topics such as the physical components of a quantum computer: qubits, entanglement, logic gates, circuits, and how they differ from a traditional computer. Also, Practical Quantum Computing for Developers discusses quantum computing in the cloud using IBM Q Experience including: the composer, quantum scores, experiments, circuits, simulators, real quantum devices, and more. You’ll be able to run experiments in the cloud on a real quantum device. Furthermore, this book shows you how to do quantum programming using the QISKit (Quantum Information Software Kit), Python SDK, and other APIs such as QASM (Quantum Assembly). You’ll learn to write code using these languages and execute it against simulators (local or remote) or a real quantum computer provided by IBM’s Q Experience. Finally, you’ll learn the current quantum algorithms for entanglement, random number generation, linear search, integer factorization, and others. You’ll peak inside the inner workings of the Bell states for entanglement, Grover’s algorithm for linear search, Shor’s algorithm for integer factorization, and other algorithms in the fields of optimization, and more. Along the way you’ll also cover game theory with the Magic Square, an example of quantum pseudo-telepathy where parties sharing entangled states can be observed to have some kind of communication between them. In this game Alice and Bob play against a referee. Quantum mechanics allows Alice and Bob to always win! By the end of this book, you will understand how this emerging technology provides massive parallelism and significant computational speedups over classical computers, and will be prepared to program quantum computers which are expected to replace traditional computers in the data center. What You Will LearnUse the Q Experience Composer, the first-of-its-kind web console to create visual programs/experiments and submit them to a quantum simulator or real device on the cloud Run programs remotely using the Q Experience REST API Write algorithms that provide superior performance over their classical counterparts Build a Node.js REST client for authenticating, listing remote devices, querying information about quantum processors, and listing or running experiments remotely in the cloud Create a quantum number generator: The quintessential coin flip with a quantum twist Discover quantum teleportation: This algorithm demonstrates how the exact state of a qubit (quantum information) can be transmitted from one location to another, with the help of classical communication and quantum entanglement between the sender and receiver Peek into single qubit operations with the classic game of Battleships with a quantum twist Handle the counterfeit coin problem: a classic puzzle that consists of finding a counterfeit coin in a beam balance among eight coins in only two turns Who This Book Is For Developers and programmers interested in this new field of computing.

Book Quantum Computer Science

Download or read book Quantum Computer Science written by Marco Lanzagorta and published by Springer Nature. This book was released on 2022-05-31 with total page 121 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this text we present a technical overview of the emerging field of quantum computation along with new research results by the authors. What distinguishes our presentation from that of others is our focus on the relationship between quantum computation and computer science. Specifically, our emphasis is on the computational model of quantum computingrather than on the engineering issues associated with its physical implementation. We adopt this approach for the same reason that a book on computer programming doesn't cover the theory and physical realization of semiconductors. Another distinguishing feature of this text is our detailed discussion of the circuit complexity of quantum algorithms. To the extent possible we have presented the material in a form that is accessible to the computer scientist, but in many cases we retain the conventional physics notation so that the reader will also be able to consult the relevant quantum computing literature. Although we expect the reader to have a solid understanding of linear algebra, we do not assume a background in physics. This text is based on lectures given as short courses and invited presentations around the world, and it has been used as the primary text for a graduatecourse at George Mason University. In all these cases our challenge has been the same: how to present to a generalaudience a concise introduction to the algorithmic structure and applications of quantum computing on an extremely short period of time. The feedback from these courses and presentations has greatly aided in making our exposition of challenging concepts more accessible to a general audience. Table of Contents: Introduction / The Algorithmic Structure of Quantum Computing / Advantages and Limitations of Quantum Computing / Amplitude Amplification / Case Study: Computational Geometry / The Quantum Fourier Transform / Case Study: The Hidden Subgroup / Circuit Complexity Analysis of Quantum Algorithms / Conclusions / Bibliography

Book Soft Computing in Chemical and Physical Sciences

Download or read book Soft Computing in Chemical and Physical Sciences written by Kanchan Sarkar and published by CRC Press. This book was released on 2017-11-06 with total page 439 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book can be regarded as 'Soft computing for physicists and chemists self-taught'. It prepares the readers with a solid background of soft computing and how to adapt soft computing techniques to problem solving in physical and chemical research. Soft computing methods have been little explored by researchers in physical and chemical sciences primarily because of the absence of books that bridge the gap between the traditional computing paradigm pursued by researchers in science and the new soft computing paradigm that has emerged in computer science. This book is the interface between these primary sources and researchers in physics and chemistry.

Book Foundations of Genetic Programming

Download or read book Foundations of Genetic Programming written by William B. Langdon and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 265 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is one of the only books to provide a complete and coherent review of the theory of genetic programming (GP). In doing so, it provides a coherent consolidation of recent work on the theoretical foundations of GP. A concise introduction to GP and genetic algorithms (GA) is followed by a discussion of fitness landscapes and other theoretical approaches to natural and artificial evolution. Having surveyed early approaches to GP theory it presents new exact schema analysis, showing that it applies to GP as well as to the simpler GAs. New results on the potentially infinite number of possible programs are followed by two chapters applying these new techniques.

Book Quantum Computing in Practice with Qiskit   and IBM Quantum Experience

Download or read book Quantum Computing in Practice with Qiskit and IBM Quantum Experience written by Hassi Norlén and published by Packt Publishing Ltd. This book was released on 2020-11-23 with total page 409 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understand the nuances of programming traditional quantum computers and solve the challenges of the future while building and executing quantum programs on IBM Quantum hardware and simulators Key FeaturesWork your way up from writing a simple quantum program to programming complex quantum algorithmsExplore the probabilistic nature of qubits by performing quantum coin tosses and using random number generatorsDelve into quantum algorithms and their practical applications in various domainsBook Description IBM Quantum Experience® is a leading platform for programming quantum computers and implementing quantum solutions directly on the cloud. This book will help you get up to speed with programming quantum computers and provide solutions to the most common problems and challenges. You’ll start with a high-level overview of IBM Quantum Experience® and Qiskit®, where you will perform the installation while writing some basic quantum programs. This introduction puts less emphasis on the theoretical framework and more emphasis on recent developments such as Shor’s algorithm and Grover’s algorithm. Next, you’ll delve into Qiskit®, a quantum information science toolkit, and its constituent packages such as Terra, Aer, Ignis, and Aqua. You’ll cover these packages in detail, exploring their benefits and use cases. Later, you’ll discover various quantum gates that Qiskit® offers and even deconstruct a quantum program with their help, before going on to compare Noisy Intermediate-Scale Quantum (NISQ) and Universal Fault-Tolerant quantum computing using simulators and actual hardware. Finally, you’ll explore quantum algorithms and understand how they differ from classical algorithms, along with learning how to use pre-packaged algorithms in Qiskit® Aqua. By the end of this quantum computing book, you’ll be able to build and execute your own quantum programs using IBM Quantum Experience® and Qiskit® with Python. What you will learnVisualize a qubit in Python and understand the concept of superpositionInstall a local Qiskit® simulator and connect to actual quantum hardwareCompose quantum programs at the level of circuits using Qiskit® TerraCompare and contrast Noisy Intermediate-Scale Quantum computing (NISQ) and Universal Fault-Tolerant quantum computing using simulators and IBM Quantum® hardwareMitigate noise in quantum circuits and systems using Qiskit® IgnisUnderstand the difference between classical and quantum algorithms by implementing Grover’s algorithm in Qiskit®Who this book is for This book is for developers, data scientists, machine learning researchers, or quantum computing enthusiasts who want to understand how to use IBM Quantum Experience® and Qiskit® to implement quantum solutions and gain practical quantum computing experience. Python programming experience is a must to grasp the concepts covered in the book more effectively. Basic knowledge of quantum computing will also be beneficial.

Book Programming the Universe

Download or read book Programming the Universe written by Seth Lloyd and published by Vintage. This book was released on 2007-03-13 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: Is the universe actually a giant quantum computer? According to Seth Lloyd, the answer is yes. All interactions between particles in the universe, Lloyd explains, convey not only energy but also information–in other words, particles not only collide, they compute. What is the entire universe computing, ultimately? “Its own dynamical evolution,” he says. “As the computation proceeds, reality unfolds.” Programming the Universe, a wonderfully accessible book, presents an original and compelling vision of reality, revealing our world in an entirely new light.

Book Quantum Computing for Programmers

Download or read book Quantum Computing for Programmers written by Robert Hundt and published by Cambridge University Press. This book was released on 2022-03-31 with total page 375 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introduction to quantum computing from a classical programmer's perspective is meant for students and practitioners alike. Over 25 fundamental algorithms are explained with full mathematical derivations and classical code for simulation, using an open-source code base developed from the ground up in Python and C++. After presenting the basics of quantum computing, the author focuses on algorithms and the infrastructure to simulate them efficiently, beginning with quantum teleportation, superdense coding, and Deutsch-Jozsa. Coverage of advanced algorithms includes the quantum supremacy experiment, quantum Fourier transform, phase estimation, Shor's algorithm, Grover's algorithm with derivatives, quantum random walks, and the Solovay–Kitaev algorithm for gate approximation. Quantum simulation is explored with the variational quantum eigensolver, quantum approximate optimization, and the Max-Cut and Subset-Sum algorithms. The book also discusses issues around programmer productivity, quantum noise, error correction, and challenges for quantum programming languages, compilers, and tools, with a final section on compiler techniques for transpilation.

Book High level Structures for Quantum Computing

Download or read book High level Structures for Quantum Computing written by Jarosław Adam Miszczak and published by Morgan & Claypool Publishers. This book was released on 2012 with total page 132 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is concerned with the models of quantum computation. Information processing based on the rules of quantum mechanics provides us with new opportunities for developing more efficient algorithms and protocols. However, to harness the power offered by quantum information processing it is essential to control the behavior of quantum mechanical objects in a precise manner. As this seems to be conceptually difficult at the level of quantum states and unitary gates, high-level quantum programming languages have been proposed for this purpose. The aim of this book is to provide an introduction to abstract models of computation used in quantum information theory. Starting from the abstract models of Turing machine and finite automata, we introduce the models of Boolean circuits and Random Access Machine and use them to present quantum programming techniques and quantum programming languages. Table of Contents: Introduction / Turing machines / Quantum Finite State Automata / Computational Circuits / Random Access Machines / Quantum Programming Environment / Quantum Programming Languages / Imperative quantum programming / Functional Quantum Programming / Outlook