EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Autoignition in Turbulent Two phase Flows

Download or read book Autoignition in Turbulent Two phase Flows written by Giulio Borghesi and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: This dissertation deals with the numerical investigation of the physics of sprays autoigniting at diesel engine conditions using Direct Numerical Simulations (DNS), and with the modelling of droplet related effects within the Conditional Moment Closure (CMC) method for turbulent non-premixed combustion. The dissertation can be split in four different sections, with the content of each being summarized below. The first part of the dissertation introduces the equations that govern the temporal and spatial evolution of a turbulent reacting flow, and provides an extensive review of the CMC method for both single and two-phase flows. The problem of modelling droplet related effects in the CMC transport equations is discussed in detail, and physically-sound models for the unclosed terms that appear in these equations and that are affected by the droplet presence are derived. The second part of the dissertation deals with the application of the CMC method to the numerical simulation of several n-heptane sprays igniting at conditions relevant to diesel engine combustion. Droplet-related terms in the CMC equations were closed with the models developed in the first part of the dissertation. For all conditions investigated, CMC could correctly capture the ignition, propagation and anchoring phases of the spray flame. Inclusion of droplet terms in the CMC equations had little influence on the numerical predictions, in line with the findings of other authors. The third part of the dissertation presents a DNS study on the autoignition of n-heptane sprays at high pressure / low temperature conditions. The analysis revealed that spray ignition occurs first in well-mixed locations with a specific value of the mixture fraction. Changes in the operating conditions (initial turbulence intensity of the background gas, global equivalence ratio in the spray region, initial droplet size distribution) affected spray ignition through changes in the mixture formation process. For each spray, a characteristic ignition delay time and a characteristic droplet evaporation time could be defined. The ratio between these time scales was suggested as a key parameter for controlling the ignition delay of the spray. The last part of the dissertation exploits the DNS simulations to perform an a priori analysis of the applicability of the CMC method to autoigniting sprays. The study revealed that standard models for the mixing quantities used in CMC provide poor approximations in two-phase flows, and are partially responsible for the poor prediction of the ignition delay time. It was also observed that first-order closure of the chemical source terms performs poorly during the onset of ignition, suggesting that second-order closures may be more appropriate for studying spray autoignition problems. The contribution of the work presented in this dissertation is to provides a detailed insight into the physics of spray autoignition at diesel engine conditions, to propose and derive original methods for incorporating droplet evaporation effects within CMC in a physically-sound manner, and to assess the applicability and shortcomings of the CMC method to autoigniting sprays.

Book Fundamentals of Turbulent and Multiphase Combustion

Download or read book Fundamentals of Turbulent and Multiphase Combustion written by Kenneth Kuan-yun Kuo and published by John Wiley & Sons. This book was released on 2012-07-03 with total page 914 pages. Available in PDF, EPUB and Kindle. Book excerpt: Detailed coverage of advanced combustion topics from the author of Principles of combustion, Second Edition Turbulence, turbulent combustion, and multiphase reacting flows have become major research topics in recent decades due to their application across diverse fields, including energy, environment, propulsion, transportation, industrial safety, and nanotechnology. Most of the knowledge accumulated from this research has never been published in book form—until now. Fundamentals of Turbulent and Multiphase Combustion presents up-to-date, integrated coverage of the fundamentals of turbulence, combustion, and multiphase phenomena along with useful experimental techniques, including non-intrusive, laser-based measurement techniques, providing a firm background in both contemporary and classical approaches. Beginning with two full chapters on laminar premixed and non-premixed flames, this book takes a multiphase approach, beginning with more common topics and moving on to higher-level applications. In addition, Fundamentals of Turbulent and Multiphase Combustion: Addresses seven basic topical areas in combustion and multiphase flows, including laminar premixed and non-premixed flames, theory of turbulence, turbulent premixed and non-premixed flames, and multiphase flows Covers spray atomization and combustion, solid-propellant combustion, homogeneous propellants, nitramines, reacting boundary-layer flows, single energetic particle combustion, and granular bed combustion Provides experimental setups and results whenever appropriate Supported with a large number of examples and problems as well as a solutions manual, Fundamentals of Turbulent and Multiphase Combustion is an important resource for professional engineers and researchers as well as graduate students in mechanical, chemical, and aerospace engineering.

Book Experiments and Numerical Simulations of Turbulent Combustion of Diluted Sprays

Download or read book Experiments and Numerical Simulations of Turbulent Combustion of Diluted Sprays written by Bart Merci and published by Springer Science & Business Media. This book was released on 2014-03-27 with total page 167 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reflects the results of the 2nd and 3rd International Workshops on Turbulent Spray Combustion. The focus is on progress in experiments and numerical simulations for two-phase flows, with emphasis on spray combustion. Knowledge of the dominant phenomena and their interactions allows development of predictive models and their use in combustor and gas turbine design. Experts and young researchers present the state-of-the-art results, report on the latest developments and exchange ideas in the areas of experiments, modelling and simulation of reactive multiphase flows. The first chapter reflects on flame structure, auto-ignition and atomization with reference to well-characterized burners, to be implemented by modellers with relative ease. The second chapter presents an overview of first simulation results on target test cases, developed at the occasion of the 1st International Workshop on Turbulent Spray Combustion. In the third chapter, evaporation rate modelling aspects are covered, while the fourth chapter deals with evaporation effects in the context of flamelet models. In chapter five, LES simulation results are discussed for variable fuel and mass loading. The final chapter discusses PDF modelling of turbulent spray combustion. In short, the contributions in this book are highly valuable for the research community in this field, providing in-depth insight into some of the many aspects of dilute turbulent spray combustion.

Book Autoignition in Turbulent Flows

Download or read book Autoignition in Turbulent Flows written by Christos Nicolaos Markides and published by . This book was released on 2006 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Direct Numerical Simulation for Turbulent Reacting Flows

Download or read book Direct Numerical Simulation for Turbulent Reacting Flows written by Thierry Baritaud and published by Editions TECHNIP. This book was released on 1996 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: Contents: Description of accurate boundary conditions for the simulation of reactive flows. Parallel direct numerical simulation of turbulent reactive flow. Flame-wall interaction and heat flux modelling in turbulent channel flow. A numerical study of laminar flame wall interaction with detailed chemistry: wall temperature effects. Modeling and simulation of turbulent flame kernel evolution. Experimental and theoretical analysis of flame surface density modelling for premixed turbulent combustion. Gradient and counter-gradient transport in turbulent premixed flames. Direct numerical simulation of turbulent flames with complex chemical kinetics. Effects of curvature and unsteadiness in diffusion flames. Implications for turbulent diffusion combustion. Numerical simulations of autoignition in turbulent mixing flows. Stabilization processes of diffusion flames. References.

Book Modeling of End Gas Autoignition for Knock Prediction in Gasoline Engines

Download or read book Modeling of End Gas Autoignition for Knock Prediction in Gasoline Engines written by Andreas Manz and published by Logos Verlag Berlin GmbH. This book was released on 2016-08-18 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: Downsizing of modern gasoline engines with direct injection is a key concept for achieving future CO22 emission targets. However, high power densities and optimum efficiency are limited by an uncontrolled autoignition of the unburned air-fuel mixture, the so-called spark knock phenomena. By a combination of three-dimensional Computational Fluid Dynamics (3D-CFD) and experiments incorporating optical diagnostics, this work presents an integral approach for predicting combustion and autoignition in Spark Ignition (SI) engines. The turbulent premixed combustion and flame front propagation in 3D-CFD is modeled with the G-equation combustion model, i.e. a laminar flamelet approach, in combination with the level set method. Autoignition in the unburned gas zone is modeled with the Shell model based on reduced chemical reactions using optimized reaction rate coefficients for different octane numbers (ON) as well as engine relevant pressures, temperatures and EGR rates. The basic functionality and sensitivities of improved sub-models, e.g. laminar flame speed, are proven in simplified test cases followed by adequate engine test cases. It is shown that the G-equation combustion model performs well even on unstructured grids with polyhedral cells and coarse grid resolution. The validation of the knock model with respect to temporal and spatial knock onset is done with fiber optical spark plug measurements and statistical evaluation of individual knocking cycles with a frequency based pressure analysis. The results show a good correlation with the Shell autoignition relevant species in the simulation. The combined model approach with G-equation and Shell autoignition in an active formulation enables a realistic representation of thin flame fronts and hence the thermodynamic conditions prior to knocking by taking into account the ignition chemistry in unburned gas, temperature fluctuations and self-acceleration effects due to pre-reactions. By the modeling approach and simulation methodology presented in this work the overall predictive capability for the virtual development of future knockproof SI engines is improved.

Book Autoignition in Turbulent Flows

Download or read book Autoignition in Turbulent Flows written by Christos Markides and published by VDM Publishing. This book was released on 2008-05 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this work gaseous fuels were released continuously and concentrically into confined annular co-flows of turbulent hot air. Following injection the fuel and air mixed and at some length downstream of the nozzle the reactive mixture autoignited. Original phenomena are reported of autoignition spots, unsteady flame propagation and extinction or flashback. The frequency of the spots was measured, as were their acoustic and chemiluminescence characteristics. Optical measurements of the autoignition locations were made and used to estimate mean delay times from injection. As would be expected by considerations of simple chemical kinetics and the mean concentration field, higher air temperatures and lower fuel velocities resulted in autoignition closer to the injector. However, as the air velocity and hence also turbulent fluctuations were increased, autoignition shifted downstream and was delayed, while its frequency and sound intensity decreased. Such and other situations are presented that cannot be explained purely in terms of chemical arguments, i.e. homogeneous delay times, highlighting the significance of the mixing field through the mixture fraction and scalar dissipation rate.

Book Modeling and Simulation in Engineering Sciences

Download or read book Modeling and Simulation in Engineering Sciences written by Noreen Sher Akbar and published by BoD – Books on Demand. This book was released on 2016-08-31 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book features state-of-the-art contributions in mathematical, experimental and numerical simulations in engineering sciences. The contributions in this book, which comprise twelve chapters, are organized in six sections spanning mechanical, aerospace, electrical, electronic, computer, materials, geotechnical and chemical engineering. Topics include metal micro-forming, compressible reactive flows, radio frequency circuits, barrier infrared detectors, fiber Bragg and long-period fiber gratings, semiconductor modelling, many-core architecture computers, laser processing of materials, alloy phase decomposition, nanofluids, geo-materials and rheo-kinetics. Contributors are from Europe, China, Mexico, Malaysia and Iran. The chapters feature many sophisticated approaches including Monte Carlo simulation, FLUENT and ABAQUS computational modelling, discrete element modelling and partitioned frequency-time methods. The book will be of interest to researchers and also consultants engaged in many areas of engineering simulation.

Book High Performance Computing in Science and Engineering   17

Download or read book High Performance Computing in Science and Engineering 17 written by Wolfgang E. Nagel and published by Springer. This book was released on 2018-02-16 with total page 522 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the state-of-the-art in supercomputer simulation. It includes the latest findings from leading researchers using systems from the High Performance Computing Center Stuttgart (HLRS) in 2017. The reports cover all fields of computational science and engineering ranging from CFD to computational physics and from chemistry to computer science with a special emphasis on industrially relevant applications. Presenting findings of one of Europe’s leading systems, this volume covers a wide variety of applications that deliver a high level of sustained performance.The book covers the main methods in high-performance computing. Its outstanding results in achieving the best performance for production codes are of particular interest for both scientists and engineers. The book comes with a wealth of color illustrations and tables of results.

Book Modeling and Simulation of Turbulent Combustion

Download or read book Modeling and Simulation of Turbulent Combustion written by Santanu De and published by Springer. This book was released on 2017-12-12 with total page 663 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a comprehensive review of state-of-the-art models for turbulent combustion, with special emphasis on the theory, development and applications of combustion models in practical combustion systems. It simplifies the complex multi-scale and nonlinear interaction between chemistry and turbulence to allow a broader audience to understand the modeling and numerical simulations of turbulent combustion, which remains at the forefront of research due to its industrial relevance. Further, the book provides a holistic view by covering a diverse range of basic and advanced topics—from the fundamentals of turbulence–chemistry interactions, role of high-performance computing in combustion simulations, and optimization and reduction techniques for chemical kinetics, to state-of-the-art modeling strategies for turbulent premixed and nonpremixed combustion and their applications in engineering contexts.

Book Scientific and Technical Aerospace Reports

Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1992 with total page 1572 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Applications of Turbulent and Multiphase Combustion

Download or read book Applications of Turbulent and Multiphase Combustion written by Kenneth Kuan-yun Kuo and published by John Wiley & Sons. This book was released on 2012-07-26 with total page 602 pages. Available in PDF, EPUB and Kindle. Book excerpt: A hands-on, integrated approach to solving combustion problems in diverse areas An understanding of turbulence, combustion, and multiphase reacting flows is essential for engineers and scientists in many industries, including power genera-tion, jet and rocket propulsion, pollution control, fire prevention and safety, and material processing. This book offers a highly practical discussion of burning behavior and chemical processes occurring in diverse materials, arming readers with the tools they need to solve the most complex combustion problems facing the scientific community today. The second of a two-volume work, Applications of Turbulent and Multiphase Combustion expands on topics involving laminar flames from Professor Kuo's bestselling book Principles of Combustion, Second Edition, then builds upon the theory discussed in the companion volume Fundamentals of Turbulent and Multiphase Combustion to address in detail cutting-edge experimental techniques and applications not covered anywhere else. Special features of this book include: Coverage of advanced applications such as solid propellants, burning behavior, and chemical boundary layer flows A multiphase systems approach discussing basic concepts before moving to higher-level applications A large number of practical examples gleaned from the authors' experience along with problems and a solutions manual Engineers and researchers in chemical and mechanical engineering and materials science will find Applications of Turbulent and Multiphase Combustion an indispensable guide for upgrading their skills and keeping up with this rapidly evolving area. It is also an excellent resource for students and professionals in mechanical, chemical, and aerospace engineering.

Book Fundamentals of Turbulent and Multiphase Combustion

Download or read book Fundamentals of Turbulent and Multiphase Combustion written by Kenneth Kuan-yun Kuo and published by John Wiley & Sons. This book was released on 2012-04-24 with total page 914 pages. Available in PDF, EPUB and Kindle. Book excerpt: Detailed coverage of advanced combustion topics from the author of Principles of combustion, Second Edition Turbulence, turbulent combustion, and multiphase reacting flows have become major research topics in recent decades due to their application across diverse fields, including energy, environment, propulsion, transportation, industrial safety, and nanotechnology. Most of the knowledge accumulated from this research has never been published in book form—until now. Fundamentals of Turbulent and Multiphase Combustion presents up-to-date, integrated coverage of the fundamentals of turbulence, combustion, and multiphase phenomena along with useful experimental techniques, including non-intrusive, laser-based measurement techniques, providing a firm background in both contemporary and classical approaches. Beginning with two full chapters on laminar premixed and non-premixed flames, this book takes a multiphase approach, beginning with more common topics and moving on to higher-level applications. In addition, Fundamentals of Turbulent and Multiphase Combustion: Addresses seven basic topical areas in combustion and multiphase flows, including laminar premixed and non-premixed flames, theory of turbulence, turbulent premixed and non-premixed flames, and multiphase flows Covers spray atomization and combustion, solid-propellant combustion, homogeneous propellants, nitramines, reacting boundary-layer flows, single energetic particle combustion, and granular bed combustion Provides experimental setups and results whenever appropriate Supported with a large number of examples and problems as well as a solutions manual, Fundamentals of Turbulent and Multiphase Combustion is an important resource for professional engineers and researchers as well as graduate students in mechanical, chemical, and aerospace engineering.

Book Conditional Moment Closure for Autoignition in Turbulent Flows

Download or read book Conditional Moment Closure for Autoignition in Turbulent Flows written by Giorgio De Paola and published by . This book was released on 2007 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Turbulent Combustion Modeling

Download or read book Turbulent Combustion Modeling written by Tarek Echekki and published by Springer Science & Business Media. This book was released on 2010-12-25 with total page 496 pages. Available in PDF, EPUB and Kindle. Book excerpt: Turbulent combustion sits at the interface of two important nonlinear, multiscale phenomena: chemistry and turbulence. Its study is extremely timely in view of the need to develop new combustion technologies in order to address challenges associated with climate change, energy source uncertainty, and air pollution. Despite the fact that modeling of turbulent combustion is a subject that has been researched for a number of years, its complexity implies that key issues are still eluding, and a theoretical description that is accurate enough to make turbulent combustion models rigorous and quantitative for industrial use is still lacking. In this book, prominent experts review most of the available approaches in modeling turbulent combustion, with particular focus on the exploding increase in computational resources that has allowed the simulation of increasingly detailed phenomena. The relevant algorithms are presented, the theoretical methods are explained, and various application examples are given. The book is intended for a relatively broad audience, including seasoned researchers and graduate students in engineering, applied mathematics and computational science, engine designers and computational fluid dynamics (CFD) practitioners, scientists at funding agencies, and anyone wishing to understand the state-of-the-art and the future directions of this scientifically challenging and practically important field.

Book Modeling of Auto ignition and NOx Formation in Turbulent Reacting Flows

Download or read book Modeling of Auto ignition and NOx Formation in Turbulent Reacting Flows written by Frédéric Collonval and published by . This book was released on 2015 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: