EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Attitude Dynamics and Control of Satellites with Fluid Ring Actuators

Download or read book Attitude Dynamics and Control of Satellites with Fluid Ring Actuators written by Nona Abolfathi Nobari and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: "Successful mission of a satellite depends on maintaining a fixed orientation with respect to the Earth. However, the attitude angles of a satellite can be perturbed because of various natural disturbance sources, such as the Earth's gravity gradient, solar radiation pressure, and the Earth's magnetic field. Modeling the attitude dynamics and developing a controller to stabilize the attitude motion are quite important steps in the design of satellites. Although several actuators exist to control the attitude motion, a novel type considered in the thesis, shows promise of producing a high torque to mass ratio. This potential justifies the in-depth study reported. The novel actuator in question consists of a ring containing fluid, whose flow is regulated by a pump. The control torque is produced due to the variation of the angular velocity of the fluid. In this thesis, first, a redundant actuator system composed of four fluid rings in a pyramidal configuration is studied. The dynamical model of the system is developed for a satellite travelling either in a circular or an elliptical orbit. The dynamical analysis of this system leads to an underdetermined system of nonlinear differential equations, whose solution without considering the control input (the torque produced by the pump pressure) shows that the fluid rings can damp out the attitude disturbances of a satellite in a circular orbit and the roll-yaw disturbances in an elliptical orbit. However, this passive damping effect is fairly slow; an active controller is hence designed in the next step. The effect of the failure of one fluid ring on the performance of the attitude control subsystem (ACS) of a satellite is also studied. It is observed that even in the case of failure of one fluid ring, the satellite can be stabilized by slight modification of the active controller. Later, a sliding mode controller is designed to cope with the uncertainties existing in the fluid model and in other parameters of the system. Although the results achieved are quite satisfactory, the chattering that exists in the steady response of the system is not desirable; hence a switching controller consisting of a sliding mode and a PID control law is designed to eliminate this chattering effect. Next, the theoretical results obtained are validated by conducting several experiments. Although the experimental results confirm the theory developed in this thesis, the large torque-to-mass ratio expected is revealed to be only possible at the cost of a quite high input voltage to the pumps regulating the flow. Therefore, two novel applications of fluid rings are proposed: as an actuator for spin stabilized satellites, or as an auxiliary actuator in satellites with magnetic torquers.Using fluid rings in spin stabilized satellites is proposed in the thesis, as an alternative to the commonly used micro-thrusters. Here, two fluid rings are mounted on the satellite while their axes of symmetry are aligned with the roll and yaw axes. To examine the feasibility and performance, a dynamical model of this spinning satellite with two fluid rings is developed. A controller is then designed to stabilize the attitude motion of this satellite.The second novel actuator system developed here consists in using fluid rings as complementary actuators in satellites with two magnetic torquers. The dynamical model is formulated, and a controller is designed to investigate the performance of this system. The simulation of the system without the fluid ring shows that the satellite attitude can be stabilized by using only two magnetic torquers, however, slowly. Upon adding the active fluid ring actuator to the system, the stabilization time is reduced by a factor of 10. The failure of the fluid ring and each magnetic torquer is also studied." --

Book Fast Satellite Attitude Maneuver and Control

Download or read book Fast Satellite Attitude Maneuver and Control written by Dong Ye and published by Academic Press. This book was released on 2022-08-02 with total page 280 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fast Satellite Attitude Maneuver and Control introduces the concept of agile satellites and corresponding fast maneuver attitude control systems, systematically and comprehensively presenting recent research results of fast maneuver attitude control for agile satellites by using advanced nonlinear control techniques. This reference book focuses on modeling and attitude control, considering different actuator combinations, actuator installation deviation, actuator fault, and flexible appendage coupling effect for agile satellites. The book provides a unified platform for understanding and applicability of agile satellites fast maneuverer and stabilization control for different purposes. It will be an excellent resource for researchers working on spacecraft design, nonlinear control systems, vehicle systems and complex control systems. Unifies existing and emerging concepts concerning nonlinear control theory, fault tolerant, and attitude control for agile satellites Provides a series of the latest results, including, but not limited to, fast maneuverer and stabilization control, hybrid actuator control, nonlinear attitude control, fault tolerant control, and active vibration suppression towards agile satellites Comprehensively captures recent advances of theory, technological aspects and applications of fast maneuverer and stabilization control in agile satellites Addresses research problems in each chapter, along with numerical and simulation results that reflect engineering practice and demonstrate the focus of developed analysis and synthesis approaches Contains comprehensive, up-to-date references, which play an indicative role for further study

Book Spacecraft Modeling  Attitude Determination  and Control

Download or read book Spacecraft Modeling Attitude Determination and Control written by Yaguang Yang and published by CRC Press. This book was released on 2019-02-06 with total page 159 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses all spacecraft attitude control-related topics: spacecraft (including attitude measurements, actuator, and disturbance torques), modeling, spacecraft attitude determination and estimation, and spacecraft attitude controls. Unlike other books addressing these topics, this book focuses on quaternion-based methods because of its many merits. The book lays a brief, but necessary background on rotation sequence representations and frequently used reference frames that form the foundation of spacecraft attitude description. It then discusses the fundamentals of attitude determination using vector measurements, various efficient (including very recently developed) attitude determination algorithms, and the instruments and methods of popular vector measurements. With available attitude measurements, attitude control designs for inertial point and nadir pointing are presented in terms of required torques which are independent of actuators in use. Given the required control torques, some actuators are not able to generate the accurate control torques, therefore, spacecraft attitude control design methods with achievable torques for these actuators (for example, magnetic torque bars and control moment gyros) are provided. Some rigorous controllability results are provided. The book also includes attitude control in some special maneuvers, such as orbital-raising, docking and rendezvous, that are normally not discussed in similar books. Almost all design methods are based on state-spaced modern control approaches, such as linear quadratic optimal control, robust pole assignment control, model predictive control, and gain scheduling control. Applications of these methods to spacecraft attitude control problems are provided. Appendices are provided for readers who are not familiar with these topics.

Book Advanced Attitude Control of Satellite

Download or read book Advanced Attitude Control of Satellite written by Bing Xiao and published by Springer Nature. This book was released on with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Fault Tolerant Attitude Control of Spacecraft

Download or read book Fault Tolerant Attitude Control of Spacecraft written by Qinglei Hu and published by Elsevier. This book was released on 2021-06-09 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fault-Tolerant Attitude Control of Spacecraft presents the fundamentals of spacecraft fault-tolerant attitude control systems, along with the most recent research and advanced, nonlinear control techniques. This book gives researchers a self-contained guide to the complex tasks of envisaging, designing, implementing and experimenting by presenting designs for integrated modeling, dynamics, fault-tolerant attitude control, and fault reconstruction for spacecraft. Specifically, the book gives a full literature review and presents preliminaries and mathematical models, robust fault-tolerant attitude control, fault-tolerant attitude control with actuator saturation, velocity-free fault tolerant attitude control, finite-time fault-tolerant attitude tracking control, and active fault-tolerant attitude contour. Finally, the book looks at the future of this interesting topic, offering readers a one-stop solution for those working on fault-tolerant attitude control for spacecraft. Presents the fundamentals of fault-tolerant attitude control systems for spacecraft in one practical solution Gives the latest research and thinking on nonlinear attitude control, fault tolerant control, and reliable attitude control Brings together concepts in fault control theory, fault diagnosis, and attitude control for spacecraft Covers advances in theory, technological aspects, and applications in spacecraft Presents detailed numerical and simulation results to assist engineers Offers a clear, systematic reference on fault-tolerant control and attitude control for spacecraft

Book Spacecraft Dynamics and Control

Download or read book Spacecraft Dynamics and Control written by Enrico Canuto and published by Butterworth-Heinemann. This book was released on 2018-03-08 with total page 792 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spacecraft Dynamics and Control: The Embedded Model Control Approach provides a uniform and systematic way of approaching space engineering control problems from the standpoint of model-based control, using state-space equations as the key paradigm for simulation, design and implementation. The book introduces the Embedded Model Control methodology for the design and implementation of attitude and orbit control systems. The logic architecture is organized around the embedded model of the spacecraft and its surrounding environment. The model is compelled to include disturbance dynamics as a repository of the uncertainty that the control law must reject to meet attitude and orbit requirements within the uncertainty class. The source of the real-time uncertainty estimation/prediction is the model error signal, as it encodes the residual discrepancies between spacecraft measurements and model output. The embedded model and the uncertainty estimation feedback (noise estimator in the book) constitute the state predictor feeding the control law. Asymptotic pole placement (exploiting the asymptotes of closed-loop transfer functions) is the way to design and tune feedback loops around the embedded model (state predictor, control law, reference generator). The design versus the uncertainty class is driven by analytic stability and performance inequalities. The method is applied to several attitude and orbit control problems. The book begins with an extensive introduction to attitude geometry and algebra and ends with the core themes: state-space dynamics and Embedded Model Control Fundamentals of orbit, attitude and environment dynamics are treated giving emphasis to state-space formulation, disturbance dynamics, state feedback and prediction, closed-loop stability Sensors and actuators are treated giving emphasis to their dynamics and modelling of measurement errors. Numerical tables are included and their data employed for numerical simulations Orbit and attitude control problems of the European GOCE mission are the inspiration of numerical exercises and simulations The suite of the attitude control modes of a GOCE-like mission is designed and simulated around the so-called mission state predictor Solved and unsolved exercises are included within the text - and not separated at the end of chapters - for better understanding, training and application Simulated results and their graphical plots are developed through MATLAB/Simulink code

Book ADCS   Spacecraft Attitude Determination and Control

Download or read book ADCS Spacecraft Attitude Determination and Control written by Michael Paluszek and published by Elsevier. This book was released on 2023-04-27 with total page 740 pages. Available in PDF, EPUB and Kindle. Book excerpt: ADCS - Spacecraft Attitude Determination and Control provides a complete introduction to spacecraft control. The book covers all elements of attitude control system design, including kinematics, dynamics, orbits, disturbances, actuators, sensors, and mission operations. Essential hardware details are provided for star cameras, reaction wheels, sun sensors, and other key components. The book explores how to design a control system for a spacecraft, control theory, and actuator and sensor details. Examples are drawn from the author’s 40 years of industrial experience with spacecraft such as GGS, GPS IIR, Mars Observer, and commercial communications satellites, and includes historical background and real-life examples. Features critical details on hardware and the space environment Combines theory and ready-to-implement practical algorithms Includes MATLAB code for all examples Provides plots and figures generated with the included code

Book Spacecraft Attitude Determination and Control

Download or read book Spacecraft Attitude Determination and Control written by J.R. Wertz and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 877 pages. Available in PDF, EPUB and Kindle. Book excerpt: Roger D. Werking Head, Attitude Determination and Control Section National Aeronautics and Space Administration/ Goddard Space Flight Center Extensiye work has been done for many years in the areas of attitude determination, attitude prediction, and attitude control. During this time, it has been difficult to obtain reference material that provided a comprehensive overview of attitude support activities. This lack of reference material has made it difficult for those not intimately involved in attitude functions to become acquainted with the ideas and activities which are essential to understanding the various aspects of spacecraft attitude support. As a result, I felt the need for a document which could be used by a variety of persons to obtain an understanding of the work which has been done in support of spacecraft attitude objectives. It is believed that this book, prepared by the Computer Sciences Corporation under the able direction of Dr. James Wertz, provides this type of reference. This book can serve as a reference for individuals involved in mission planning, attitude determination, and attitude dynamics; an introductory textbook for stu dents and professionals starting in this field; an information source for experimen ters or others involved in spacecraft-related work who need information on spacecraft orientation and how it is determined, but who have neither the time nor the resources to pursue the varied literature on this subject; and a tool for encouraging those who could expand this discipline to do so, because much remains to be done to satisfy future needs.

Book Spacecraft Momentum Control Systems

Download or read book Spacecraft Momentum Control Systems written by Frederick A. Leve and published by Springer. This book was released on 2015-10-17 with total page 262 pages. Available in PDF, EPUB and Kindle. Book excerpt: The goal of this book is to serve both as a practical technical reference and a resource for gaining a fuller understanding of the state of the art of spacecraft momentum control systems, specifically looking at control moment gyroscopes (CMGs). As a result, the subject matter includes theory, technology, and systems engineering. The authors combine material on system-level architecture of spacecraft that feature momentum-control systems with material about the momentum-control hardware and software. This also encompasses material on the theoretical and algorithmic approaches to the control of space vehicles with CMGs. In essence, CMGs are the attitude-control actuators that make contemporary highly agile spacecraft possible. The rise of commercial Earth imaging, the advances in privately built spacecraft (including small satellites), and the growing popularity of the subject matter in academic circles over the past decade argues that now is the time for an in-depth treatment of the topic. CMGs are augmented by reaction wheels and related algorithms for steering all such actuators, which together comprise the field of spacecraft momentum control systems. The material is presented at a level suitable for practicing engineers and those with an undergraduate degree in mechanical, electrical, and/or aerospace engineering.

Book Fundamentals of Spacecraft Attitude Determination and Control

Download or read book Fundamentals of Spacecraft Attitude Determination and Control written by F. Landis Markley and published by Springer. This book was released on 2014-05-31 with total page 486 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores topics that are central to the field of spacecraft attitude determination and control. The authors provide rigorous theoretical derivations of significant algorithms accompanied by a generous amount of qualitative discussions of the subject matter. The book documents the development of the important concepts and methods in a manner accessible to practicing engineers, graduate-level engineering students and applied mathematicians. It includes detailed examples from actual mission designs to help ease the transition from theory to practice and also provides prototype algorithms that are readily available on the author’s website. Subject matter includes both theoretical derivations and practical implementation of spacecraft attitude determination and control systems. It provides detailed derivations for attitude kinematics and dynamics and provides detailed description of the most widely used attitude parameterization, the quaternion. This title also provides a thorough treatise of attitude dynamics including Jacobian elliptical functions. It is the first known book to provide detailed derivations and explanations of state attitude determination and gives readers real-world examples from actual working spacecraft missions. The subject matter is chosen to fill the void of existing textbooks and treatises, especially in state and dynamics attitude determination. MATLAB code of all examples will be provided through an external website.

Book Satellite Attitude Dynamics Simulation and Control

Download or read book Satellite Attitude Dynamics Simulation and Control written by and published by . This book was released on 1998 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Satellite Attitude Dynamics Simulation and Control System (SADSaC) project has two main objectives. The first is to provide a visual demonstration of satellite attitude dynamics. The second purpose is to be used as a learning tool by providing actuator hardware for student analysis aiid design. SAD SaC is a 22" cube attached to a bearing on a 3, pole that allows for near-frictionless rotation about the vertical axis. Attitude control will be done using a dual actuator system of a reaction wheel and gas jet thrusters. Tachometers and an absolute optical encoder will provide sensing capabilities of satellite position and satellite and reaction wheel velocities. This paper describes in detail the procedures used during design from conception to operation, as well as the modeling and system tests that were necessary to ensure proper operation. Documentation of engineering drawings, mathematical models and component parts ensure easy duplication of SADSaC should the need for more than one arise.

Book Spacecraft Dynamics and Control

Download or read book Spacecraft Dynamics and Control written by Marcel J. Sidi and published by Cambridge University Press. This book was released on 2000-07-03 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: Satellites are used increasingly in telecommunications, scientific research, surveillance, and meteorology, and these satellites rely heavily on the effectiveness of complex onboard control systems. This 1997 book explains the basic theory of spacecraft dynamics and control and the practical aspects of controlling a satellite. The emphasis throughout is on analyzing and solving real-world engineering problems. For example, the author discusses orbital and rotational dynamics of spacecraft under a variety of environmental conditions, along with the realistic constraints imposed by available hardware. Among the topics covered are orbital dynamics, attitude dynamics, gravity gradient stabilization, single and dual spin stabilization, attitude maneuvers, attitude stabilization, and structural dynamics and liquid sloshing.

Book Issues in Robotics and Automation  2013 Edition

Download or read book Issues in Robotics and Automation 2013 Edition written by and published by ScholarlyEditions. This book was released on 2013-05-01 with total page 1196 pages. Available in PDF, EPUB and Kindle. Book excerpt: Issues in Robotics and Automation / 2013 Edition is a ScholarlyEditions™ book that delivers timely, authoritative, and comprehensive information about Computing Information and Control. The editors have built Issues in Robotics and Automation: 2013 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Computing Information and Control in this book to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Robotics and Automation: 2013 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.

Book Contributions to the advance of the integration density of CubeSats

Download or read book Contributions to the advance of the integration density of CubeSats written by Grau, Sebastian and published by Universitätsverlag der TU Berlin. This book was released on 2019-09-17 with total page 174 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis investigates potential technologies to increase the integration density of CubeSats. Observations of the CubeSat market and missions are recorded in order to derive design criteria for high performance single unit CubeSats. A promising approach to increased integration density is relocation of the components of multiple satellite subsystems to form a highly integrated, multi-functional solar panel. Eligible components are usually allocated to the communication system, the electric power system, or the attitude determination and control system. In a joint research project, development, optimization, and miniaturization of those components in order to form a highly integrated, multi-functional solar panel is investigated. The author first summarizes the development work of the project partners for a picosatellite solar antenna and puts it into relation to the overall solar panel design. Advantage of using solar antennas over simple patch antennas is the reduced loss of solar cell area, and hence available electric power, that is usually accompanied by the usage of higher frequency bands for broadband payload data transmission. Magnetic attitude actuators are the backbone of CubeSat attitude control. In order to increase their performance and lower their resource consumption, numerical optimization of the commonly used three coil types is investigated by the author. This leads to the formulation of a novel optimization approach, which is better suited to real-world considerations for magnetic actuator design. Results from the application of the optimization procedure show potential for every coil type. The state of the art of a novel type of attitude control actuators, so-called fluid-dynamic actuators which are based on angular momentum exchange, is advanced by the author by introducing miniaturized 3D-printed conduits for single unit CubeSat applications. Following development and functional verification, actuators are compared to existing reaction wheel systems, which shows their superiority for agile attitude maneuvers and integration with the satellite bus. Further investigation exploits additive manufacturing technologies to create redundancy concepts using four actuators with three-dimensional conduits.Finally, development, optimization, and miniaturization of subsystem components is brought together in the design, assembly, and test of a highly integrated, multi-functional solar panel. Analysis of a single unit CubeSat design that applies different configurations of the multi-functional solar panel shows the potential for more than 50% payload mass and payload volume. This brings integration density of single unit CubeSats to a level similar to that of the larger triple unit form factors currently employed for the New Space mega-constellations. Diese Dissertation untersucht mögliche Technologien zur Erhöhung der Integrationsdichte von CubeSats. Beobachtungen des CubeSat-Marktes und ausgewählter Missionen werden zusammengetragen um Entwurfskriterien für hochperformante 1U CubeSats abzuleiten. Ein vielversprechender Ansatz zur Erhöhung der Integrationsdichte ist der Umzug von Komponenten verschiedener Satellitensubsysteme auf ein zu entwickelndes hochintegriertes, multifunktionales Solarpaneel. Infrage kommende Komponenten sind für gewöhnlich dem Kommunikationssystem, dem Energieversorgungssystem, oder dem Lageregelungssystem zugeordnet. In Rahmen eines gemeinschaftlichen Forschungsvorhabens wurden Entwicklung, Optimierung, und Miniaturisierung ausgewählter Komponenten eines solchen hochintegrierten, multifunktionalen Paneels untersucht. Durch den Autor wird zunächst die Entwicklung einer Solarantenne für Pikosatelliten durch den Projektpartner zusammengefasst und in Zusammenhang um Entwurf des Solarpaneels gebracht. Der Vorteil einer Solarantenne gegenüber einer einfachen Patch-Antenne ist der geringere Verlust an Solarzellenfläche, und damit zur Verfügung stehender elektrischer Leistung, der üblicherweise mit der Verwendung höherer Frequenzbänder zur breitbandigen Nutzlastdatenübertragung einhergeht. Magnetische Lageregelungsaktuatoren bilden das Rückgrat der CubeSat-Lageregelung. Um deren Leistungsfähigkeit zu erhöhen und den Ressourcenverbrauch zu verringern, wird durch den Autor die numerische Optimierung der drei gebräuchlichen Spulentypen untersucht. Dies führt zur Formulierung eines neuartigen Optimierungsansatzes welcher besser für die Anwendung realer Entwurfsprobleme geeignet ist. Die Optimierungsergebnisse zeigen ein großes Potential für die Optimierung aller betrachteter Spulentypen auf. Der Stand der Technik im Bereich neuartiger Lageregelungsaktuatoren, den sogenannten fluiddynamischen Aktuatoren die auf Drehimpulsaustausch basieren, wird durch den Autor durch die Einführung miniaturisierter 3D-gedruckter Kanäle für die Verwendung auf 1U CubeSats vorangebracht. Im Anschluss an die Entwicklung und funktionale Verifikation werden diese Aktuatoren mit existierenden Reaktionsradsystemen verglichen, was deren Überlegenheit bei agilen Lageregelungsmanövern und der Integration in den Satellitenbus aufzeigt. Weitere Untersuchungen nutzen die additiven Herstellungsverfahren zur Darstellung von redundanten Konzepten bestehend aus vier Aktuatoren mit dreidimensionalen Kanalgeometrien. Abschließend werden Entwicklung, Optimierung und Miniaturisierung der Subsystemkomponenten im Entwurf, Aufbau und Test eines hochintegrierten, multifunktionalen Seitenwandpaneels zusammengeführt. Die Analyse eines 1U CubeSat-Entwurfs unter Verwendung verschiedener Konfigurationen des multifunktionalen Solarpaneels zeigt ein Potential für jeweils mehr als 50% verfügbarer Nutzlastmasse und Nutzlastvolumen vom gesamten Satelliten. Dies hebt die Integrationsdichte von 1U CubeSats auf ein ähnliches Niveau der 3U Formfaktoren, welche gegenwärtig bei den New Space Megakonstellationen zur Anwendung kommen.

Book Astrodynamics Network AstroNet II

Download or read book Astrodynamics Network AstroNet II written by Gerard Gómez and published by Springer. This book was released on 2016-07-29 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: These are the proceedings of the "AstroNet-II International Final Conference". This conference was one of the last milestones of the Marie-Curie Research Training Network on Astrodynamics "AstroNet-II", that has been funded by the European Commission under the Seventh Framework Programme. The aim of the conference, and thus this book, is to communicate work on astrodynamics problems to an international and specialised audience. The results are presented by both members of the network and invited specialists. The topics include: trajectory design and control, attitude control, structural flexibility of spacecraft and formation flying. The book addresses a readership across the traditional boundaries between mathematics, engineering and industry by offering an interdisciplinary and multisectorial overview of the field.

Book Control Allocation for Spacecraft Under Actuator Faults

Download or read book Control Allocation for Spacecraft Under Actuator Faults written by Qinglei Hu and published by Springer Nature. This book was released on 2021-03-13 with total page 221 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a systematical and comprehensive description of some facets of modeling, designing, analyzing and exploring the control allocation and fault-tolerant control problems for over-actuated spacecraft attitude control system under actuator failures, system uncertainties and disturbances. The book intends to provide a unified platform for understanding and applicability of the fault-tolerant attitude control and control allocation for different purposes in aerospace engineering and some related fields. And it is particularly suited for readers who are interested to learn solutions in spacecraft attitude control system design and related engineering applications.

Book Spacecraft Attitude Dynamics and Control

Download or read book Spacecraft Attitude Dynamics and Control written by Vladimir A. Chobotov and published by Krieger Publishing Company. This book was released on 1991 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written for aerospace engineering courses of senior undergraduate or graduate level, this work presents basic concepts, methods and mathematical developments in spacecraft attitude dynamics and control. Topics covered include rigid body dynamics, environmental effects and linear control theory.