EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Atomistics of Fracture

    Book Details:
  • Author : R.M. Latanison
  • Publisher : Springer Science & Business Media
  • Release : 2012-12-06
  • ISBN : 1461335000
  • Pages : 1043 pages

Download or read book Atomistics of Fracture written by R.M. Latanison and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 1043 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is now more than 100 years since certain detrimental effects on the ductility of iron were first associated with the presence of hydrogen. Not only is hydrogen embrittlement still a major industri al problem, but it is safe to say that in a mechanistic sense we still do not know what hydrogen (but not nitrogen or oxygen, for example) does on an atomic scale to induce this degradation. The same applies to other examples of environmentally-induced fracture: what is it about the ubiquitous chloride ion that induces premature catastrophic fracture (stress corrosion cracking) of ordinarily ductile austenitic stainless steels? Why, moreover, are halide ions troublesome but the nitrate or sulfate anions not deleterious to such stainless steels? Likewise, why are some solid metals embrit tled catastrophically by same liquid metals (liquid metal embrit tlement) - copper and aluminum, for example, are embrittled by liquid mercury. In short, despite all that we may know about the materials science and mechanics of fracture on a macroscopic scale, we know little about the atomistics of fracture in the absence of environmental interactions and even less when embrittlement phe nomena such as those described above are involved. On the other hand, it is interesting to note that physical chemists and surface chemists also have interests in the same kinds of interactions that occur on an atomic scale when metals such as nickel or platinum are used, for example, as catalysts for chemical reactions.

Book Atomistic Modeling of Materials Failure

Download or read book Atomistic Modeling of Materials Failure written by Markus J. Buehler and published by Springer Science & Business Media. This book was released on 2008-08-07 with total page 547 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an introduction to molecular and atomistic modeling techniques applied to fracture and deformation of solids, focusing on a variety of brittle, ductile, geometrically confined and biological materials. The overview includes computational methods and techniques operating at the atomic scale, and describes how these techniques can be used to model cracks and other deformation mechanisms. The book aims to make new molecular modeling techniques available to a wider community.

Book Fracture of Brittle Solids

Download or read book Fracture of Brittle Solids written by Brian Lawn and published by Cambridge University Press. This book was released on 2010-01-14 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an advanced text for higher degree materials science students and researchers concerned with the strength of highly brittle covalent-ionic solids, principally ceramics. It is a reconstructed and greatly expanded edition of a book first published in 1975. The book presents a unified continuum, microstructural and atomistic treatment of modern day fracture mechanics from a materials perspective. Particular attention is directed to the basic elements of bonding and microstructure that govern the intrinsic toughness of ceramics. These elements hold the key to the future of ceramics as high-technology materials--to make brittle solids strong, we must first understand what makes them weak. The underlying theme of the book is the fundamental Griffith energy-balance concept of crack propagation. The early chapters develop fracture mechanics from the traditional continuum perspective, with attention to linear and nonlinear crack-tip fields, equilibrium and non-equilibrium crack states. It then describes the atomic structure of sharp cracks, the topical subject of crack-microstructure interactions in ceramics, with special focus on the concepts of crack-tip shielding and crack-resistance curves, and finally deals with indentation fracture, flaws and structural reliability.

Book Metal Ceramic Interfaces

Download or read book Metal Ceramic Interfaces written by M. Rühle and published by Elsevier. This book was released on 2013-10-22 with total page 448 pages. Available in PDF, EPUB and Kindle. Book excerpt: As engineering materials and structures often contain a metal or metallic alloy bonded to a ceramic, the resultant interface must be able to sustain mechanical forces without failure. They also play an important role in oxidation or reduction of materials. The workshop on 'Bonding, Structure and Mechanical Properties of Metal/Ceramic Interfaces' was held in January 1989 within the Acta/Scripta Metallurgica conference series. It drew together an international collection of 70 scientists who discussed a wide range of issues related to metal-ceramic interfaces. The sessions were divided into 7 categories: structure and bonding, chemistry at interfaces, formation of interfaces, structure of interfaces, thermodynamics/atomistics of interface fracture, mechanics of interface cracks, and fracture resistance of bimaterial interfaces. Within these headings attention was paid to grain boundaries, the influence of chemical processes on the behaviour of interfaces, diffusion bonding, characterization of fracture, and crack propagation by fatigue and by stress corrosion. The book presents a useful reference source for materials scientists, physicists, chemists, and mechanical engineers who are concerned with the roles and properties of interfaces.

Book Configurational Forces

Download or read book Configurational Forces written by Gerard A. Maugin and published by CRC Press. This book was released on 2016-04-19 with total page 562 pages. Available in PDF, EPUB and Kindle. Book excerpt: Exploring recent developments in continuum mechanics, Configurational Forces: Thermomechanics, Physics, Mathematics, and Numerics presents the general framework for configurational forces. It also covers a range of applications in engineering and condensed matter physics. The author presents the fundamentals of accepted standard continuum mechanics, before introducing Eshelby material stress, field theory, variational formulations, Noether’s theorem, and the resulting conservation laws. In the chapter on complex continua, he compares the classical perspective of B.D. Coleman and W. Noll with the viewpoint linked to abstract field theory. He then describes the important notion of local structural rearrangement and its relationship to Eshelby stress. After looking at the relevance of Eshelby stress in the thermodynamic description of singular interfaces, the text focuses on fracture problems, microstructured media, systems with mass exchanges, and electromagnetic deformable media. The concluding chapters discuss the exploitation of the canonical conservation law of momentum in nonlinear wave propagation, the application of canonical-momentum conservation law and material force in numerical schemes, and similarities of fluid mechanics and aerodynamics. Written by a long-time researcher in mechanical engineering, this book provides a detailed treatment of the theory of configurational forces—one of the latest and most fruitful advances in macroscopic field theories. Through many applications, it shows the depth and efficiency of this theory.

Book Handbook of Materials Modeling

Download or read book Handbook of Materials Modeling written by Sidney Yip and published by Springer Science & Business Media. This book was released on 2007-11-17 with total page 2903 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first reference of its kind in the rapidly emerging field of computational approachs to materials research, this is a compendium of perspective-providing and topical articles written to inform students and non-specialists of the current status and capabilities of modelling and simulation. From the standpoint of methodology, the development follows a multiscale approach with emphasis on electronic-structure, atomistic, and mesoscale methods, as well as mathematical analysis and rate processes. Basic models are treated across traditional disciplines, not only in the discussion of methods but also in chapters on crystal defects, microstructure, fluids, polymers and soft matter. Written by authors who are actively participating in the current development, this collection of 150 articles has the breadth and depth to be a major contributor toward defining the field of computational materials. In addition, there are 40 commentaries by highly respected researchers, presenting various views that should interest the future generations of the community. Subject Editors: Martin Bazant, MIT; Bruce Boghosian, Tufts University; Richard Catlow, Royal Institution; Long-Qing Chen, Pennsylvania State University; William Curtin, Brown University; Tomas Diaz de la Rubia, Lawrence Livermore National Laboratory; Nicolas Hadjiconstantinou, MIT; Mark F. Horstemeyer, Mississippi State University; Efthimios Kaxiras, Harvard University; L. Mahadevan, Harvard University; Dimitrios Maroudas, University of Massachusetts; Nicola Marzari, MIT; Horia Metiu, University of California Santa Barbara; Gregory C. Rutledge, MIT; David J. Srolovitz, Princeton University; Bernhardt L. Trout, MIT; Dieter Wolf, Argonne National Laboratory.

Book Fracture Nanomechanics

    Book Details:
  • Author : Takayuki Kitamura
  • Publisher : CRC Press
  • Release : 2011-09-06
  • ISBN : 9814241830
  • Pages : 306 pages

Download or read book Fracture Nanomechanics written by Takayuki Kitamura and published by CRC Press. This book was released on 2011-09-06 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: Small structures of the micro/nanometer scale, such as electronic/optic devices and MEMS/NEMS have been developed, and the size of their elements now approaches the nano/atomic scale. This book discuses the fracture behavior of nano/atomic elements (nanofilms, nanowires, and so on) and focuses on the initiation and propagation of interface crack and mechanical instability criterion of atomic structures. This covers the fundamentals and the applicability of the top-down (conventional fracture mechanics to nanoscale) and bottom-up (atomic mechanics including ab initio simulation) concepts. New areas, such as multiphysics characteristics of nanoelements, are introduced as well.

Book Mechanical Properties of Metals

Download or read book Mechanical Properties of Metals written by C. W. Lung and published by World Scientific. This book was released on 1999 with total page 442 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is intended to describe the basic and newly developed elements of the physics of solids and materials science on mechanical properties of metals with as much continuity as is possible. Particular emphasis has been placed in atomistic and fractal approaches and continuum theory of dislocations is also introduced. Since the book is meant for the two main topics of progress in recent years, some interesting and important topics which have not been discussed or introduced are given in detail.For a long time, pair potentials were used very expensively in simulation studies. They can reproduce usefully total energies for many systems. But when one turns to elastic properties, fracture of surfaces, and the vacancy formation energy, deficiencies and limitations begin to emerge. These limitations of the simple pair potential approximation have been addressed by the development of empirical many-body potentials which is the major theme of our book.Over a decade or more, diverse scientists have recognized that many of the structures common in their experiments have a special kind of geometrical complexity. The key to this progress is the recognition that many random structures obey a symmetry that objects look the same on many different scales of observation. The concept of fractals was introduced by Mandelbrot and applied to fractures by himself and collaborators. Their work pointed to a correlation between toughness and the fractal dimension. Our interest is the fractal aspects of fractured surfaces. We will discuss more in our book.The strain field of a dislocation has a long range part and this part can be discussed rigorously from elasticity theory. Recent progress in elastic strain fields and dislocation mobility were made by Indenbom and Lothe. The elementary essentials will be introduced in our book.

Book Chemistry and Physics of Fracture

Download or read book Chemistry and Physics of Fracture written by R.M. Latanision and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 726 pages. Available in PDF, EPUB and Kindle. Book excerpt: For many years it has been recognized that engineering materials that are-tough and ductile can be rendered susceptible to premature fracture through their reaction with the environment. Over 100 years ago, Reynolds associated hydrogen with detrimental effects on the ductility of iron. The "season cracking" of brass has been a known problem for dec ades, but the mechanisms for this stress-corrosion process are only today being elucidated. In more recent times, the mechanical properties of most engineering materials have been shown to be adversely affected by hydrogen embrittlement or stress-corrosion cracking. Early studies of environmental effects on crack growth attempted to identify a unified theory to explain the crack growth behavior of groups of materials in a variety of environments. It is currently understood that there are numerous stress-corrosion processes some of which may be common to several materials, but that the crack growth behavior of a given material is dependent on microstructure, microchemistry, mechanics, surface chemistry, and solution chemistry. Although the mechanism by which various chemical species in the environment may cause cracks to propagate in some materials but not in others is very complex, the net result of all environmentally induced fracture is the reduction in the force and energy associated with the tensile or shear separation of atoms at the crack tip.

Book The Physics of Deformation and Fracture of Polymers

Download or read book The Physics of Deformation and Fracture of Polymers written by A. S. Argon and published by Cambridge University Press. This book was released on 2013-03-07 with total page 535 pages. Available in PDF, EPUB and Kindle. Book excerpt: A physical, mechanism-based presentation of the plasticity and fracture of polymers, covering industrial scale applications through to nanoscale biofluidic devices.

Book Fracture Mechanics

Download or read book Fracture Mechanics written by Chin-Teh Sun and published by Academic Press. This book was released on 2011-10-04 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fracture Mechanics covers classical and modern methods and introduce new/unique techniques, making this text an important resource for anyone involved in the study or application of fracture mechanics. Using insights from leading experts in fracture mechanics, it provides new approaches and new applications to advance the understanding of crack initiation and propagation. With a concise and easily understood mathematical treatment of crack tip fields, this book provides the basis for applying fracture mechanics in solving practical problems. It features a unique coverage of bi-material interfacial cracks, with applications to commercially important areas of composite materials, layered structures, and microelectronic packaging. A full chapter is devoted to the cohesive zone model approach, which has been extensively used in recent years to simulate crack propagation. A unified discussion of fracture criteria involving nonlinear/plastic deformations is also provided. The book is an invaluable resource for mechanical, aerospace, civil, and biomedical engineers in the field of mechanics as well as for graduate students and researchers studying mechanics. Concise and easily understood mathematical treatment of crack tip fields (chapter 3) provides the basis for applying fracture mechanics in solving practical problems Unique coverage of bi-material interfacial cracks (chapter 8), with applications to commercially important areas of composite materials, layered structures, and microelectronic packaging A full chapter (chapter 9) on the cohesive zone model approach, which has been extensively used in recent years to simulate crack propagation A unified discussion of fracture criteria involving nonlinear/plastic deformations

Book Fracture Mechanics

    Book Details:
  • Author : Surjya Kumar Maiti
  • Publisher : Cambridge University Press
  • Release : 2015-10
  • ISBN : 1107096766
  • Pages : 301 pages

Download or read book Fracture Mechanics written by Surjya Kumar Maiti and published by Cambridge University Press. This book was released on 2015-10 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book offers detailed treatment on fundamental concepts of fracture mechanics. The text is useful for undergraduate students, graduate students and researchers.

Book Materials Science and Engineering for the 1990s

Download or read book Materials Science and Engineering for the 1990s written by National Research Council and published by National Academies Press. This book was released on 1989-02-01 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Materials science and engineering (MSE) contributes to our everyday lives by making possible technologies ranging from the automobiles we drive to the lasers our physicians use. Materials Science and Engineering for the 1990s charts the impact of MSE on the private and public sectors and identifies the research that must be conducted to help America remain competitive in the world arena. The authors discuss what current and future resources would be needed to conduct this research, as well as the role that industry, the federal government, and universities should play in this endeavor.

Book Reviews in Computational Chemistry  Volume 27

Download or read book Reviews in Computational Chemistry Volume 27 written by Kenny B. Lipkowitz and published by John Wiley & Sons. This book was released on 2010-09-23 with total page 515 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume, like those prior to it, features chapters by experts in various fields of computational chemistry. Volume 27 covers brittle fracture, molecular detailed simulations of lipid bilayers, semiclassical bohmian dynamics, dissipative particle dynamics, trajectory-based rare event simulations, and understanding metal/metal electrical contact conductance from the atomic to continuum scales. Also included is a chapter on career opportunities in computational chemistry and an appendix listing the e-mail addresses of more than 2500 people in that discipline. FROM REVIEWS OF THE SERIES "Reviews in Computational Chemistry remains the most valuable reference to methods and techniques in computational chemistry." —JOURNAL OF MOLECULAR GRAPHICS AND MODELLING "One cannot generally do better than to try to find an appropriate article in the highly successful Reviews in Computational Chemistry. The basic philosophy of the editors seems to be to help the authors produce chapters that are complete, accurate, clear, and accessible to experimentalists (in particular) and other nonspecialists (in general)." —JOURNAL OF THE AMERICAN CHEMICAL SOCIETY

Book Fundamentals of Hydrogen Embrittlement

Download or read book Fundamentals of Hydrogen Embrittlement written by Michihiko Nagumo and published by Springer Nature. This book was released on 2023-05-22 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the second edition of the one originally published in 2016, as the first comprehensive treatment on the fundamentals of hydrogen embrittlement of metallic materials, mainly steel. The book provides students and researchers engaging in hydrogen problems with a unified view of the subject. Establishing reliable principles for materials design against hydrogen embrittlement and assessing their performance are recent urgent industrial needs in developing high-strength steel for hydrogen energy equipment and weight-reducing vehicles. The interdisciplinary nature of the subject, covering metal physics, materials science, and mechanics of fracture, has disturbed a profound understanding of the problem. In this book, previous studies are critically reviewed, and supplemental descriptions of fundamental ideas are presented when necessary. Emphasis is placed on experimental facts, with particular attention to their implication rather than phenomenological appearance. The adopted experimental conditions are also noted since the operating mechanism of hydrogen might differ by material and environment. For theories, employed assumptions and premises are noted to examine their versatility. Progress in the past decade in experimental and theoretical tools is remarkable and has nearly unveiled characteristic features of hydrogen embrittlement. Proposed models have almost covered feasible aspects of the function of hydrogen. This second edition has enriched the contents with recent crucial findings. Chapters on the manifestation of embrittlement in the deterioration of mechanical properties and microscopic features are reorganized, and the description is revised for the convenience of readers’ systematic understanding. A new chapter is created for delayed fracture in atmospheric environments as a conclusive subject of critical ideas presented in this book.

Book Handbook of Silicon Based MEMS Materials and Technologies

Download or read book Handbook of Silicon Based MEMS Materials and Technologies written by Markku Tilli and published by Elsevier. This book was released on 2020-04-17 with total page 1028 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Silicon Based MEMS Materials and Technologies, Third Edition is a comprehensive guide to MEMS materials, technologies, and manufacturing with a particular emphasis on silicon as the most important starting material used in MEMS. The book explains the fundamentals, properties (mechanical, electrostatic, optical, etc.), materials selection, preparation, modeling, manufacturing, processing, system integration, measurement, and materials characterization techniques of MEMS structures. The third edition of this book provides an important up-to-date overview of the current and emerging technologies in MEMS making it a key reference for MEMS professionals, engineers, and researchers alike, and at the same time an essential education material for undergraduate and graduate students. Provides comprehensive overview of leading-edge MEMS manufacturing technologies through the supply chain from silicon ingot growth to device fabrication and integration with sensor/actuator controlling circuits Explains the properties, manufacturing, processing, measuring and modeling methods of MEMS structures Reviews the current and future options for hermetic encapsulation and introduces how to utilize wafer level packaging and 3D integration technologies for package cost reduction and performance improvements Geared towards practical applications presenting several modern MEMS devices including inertial sensors, microphones, pressure sensors and micromirrors

Book Mechanical and Corrosion Properties

Download or read book Mechanical and Corrosion Properties written by and published by . This book was released on 1983 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: