EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Atomistic Simulations of Glasses

Download or read book Atomistic Simulations of Glasses written by Jincheng Du and published by John Wiley & Sons. This book was released on 2022-04-05 with total page 564 pages. Available in PDF, EPUB and Kindle. Book excerpt: A complete reference to computer simulations of inorganic glass materials In Atomistic Simulations of Glasses: Fundamentals and Applications, a team of distinguished researchers and active practitioners delivers a comprehensive review of the fundamentals and practical applications of atomistic simulations of inorganic glasses. The book offers concise discussions of classical, first principles, Monte Carlo, and other simulation methods, together with structural analysis techniques and property calculation methods for the models of glass generated from these atomistic simulations, before moving on to practical examples of the application of atomistic simulations in the research of several glass systems. The authors describe simulations of silica, silicate, aluminosilicate, borosilicate, phosphate, halide and oxyhalide glasses with up-to-date information and explore the challenges faced by researchers when dealing with these systems. Both classical and ab initio methods are examined and comparison with experimental structural and property data provided. Simulations of glass surfaces and surface-water reactions are also covered. Atomistic Simulations of Glasses includes multiple case studies and addresses a variety of applications of simulation, from elucidating the structure and properties of glasses for optical, electronic, architecture applications to high technology fields such as flat panel displays, nuclear waste disposal, and biomedicine. The book also includes: A thorough introduction to the fundamentals of atomistic simulations, including classical, ab initio, Reverse Monte Carlo simulation and topological constraint theory methods Important ingredients for simulations such as interatomic potential development, structural analysis methods, and property calculations are covered Comprehensive explorations of the applications of atomistic simulations in glass research, including the history of atomistic simulations of glasses Practical discussions of rare earth and transition metal-containing glasses, as well as halide and oxyhalide glasses In-depth examinations of glass surfaces and silicate glass-water interactions Perfect for glass, ceramic, and materials scientists and engineers, as well as physical, inorganic, and computational chemists, Atomistic Simulations of Glasses: Fundamentals and Applications is also an ideal resource for condensed matter and solid-state physicists, mechanical and civil engineers, and those working with bioactive glasses. Graduate students, postdocs, senior undergraduate students, and others who intend to enter the field of simulations of glasses would also find the book highly valuable.

Book Atomistic simulations of Silicate Glasses

Download or read book Atomistic simulations of Silicate Glasses written by Seung Ho Hahn and published by . This book was released on 2020 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Silicate-based glasses are one of the most versatile materials in terms of technological perspective with a wide range of industrial applications. In most cases, glass products are exposed to various aqueous environments (either humid air or liquid water) and subject to physical contact with foreign objects, which leads to deterioration of chemical and mechanical properties of glass surfaces. Therefore, understanding their interactions with adsorbed interfacial water molecules is critical as it can provide physical insights needed for rational design of more durable glasses. Experimental characterization approaches have been applied to tackle difficult problems associated with the complex nature of glass surfaces but they are often limited by the time-scale resolution. As a result, they have failed to offer important structural characteristics and chemical reaction mechanisms under dynamic processes happening at the glass surface. To complement the challenges that experimental endeavors are encountering, this dissertation aims to provide a comprehensive understanding of water interactions of silicate glass surfaces using atomistic-scale simulations techniques. In particular, ReaxFF reactive force field-based molecular dynamics (MD) simulations are employed to study two distinct surface phenomena, i) surface water reaction and ii) surface mechanochemical wear process. These studies represent the surface damage process of silicate glass in the absence and presence of mechanical actions, respectively. The first part of this dissertation describes the water interactions of a silicate glass with readily leachable alkali (sodium) ions. In this study, highly complex surface chemistry, including proton/water exchange with the sodium ions, formation of relatively long-living sodium-hydroxide ionic complexes at the glass surface and eventual dissolution of those ion pairs into the water phase are described. Also, surface mapping of water binding energy to the glass surface is evaluated at different stages of the glass-water reaction, which would be relevant to assess the chemical durability of the glass materials based on the glass network topology. After the transport behavior and glass-water reaction mechanism at the surface has been identified, the mechanochemical wear process of sodium silicate glass rubbed with amorphous silica in the absence and presence of interfacial water molecules is covered in the second part of this dissertation. The effect of water molecules on the shear-induced chemical reaction at the sliding interface was investigated and the dependence of wear on the number of interfacial water molecules in ReaxFF-MD simulations was found to be qualitatively in reasonable agreement with the experimental data. The large-scale atomistic simulation approaches with ReaxFF reactive force field presented in this dissertation alleviates the limitations of DFT calculations and experiments, providing new and meaningful insights on the chemical dynamics associated within the glass-water interface.

Book Understanding Structure  Thermodynamics  and Dynamics of Silica Liquids and Glasses Using Atomistic Simulations and Machine Learning

Download or read book Understanding Structure Thermodynamics and Dynamics of Silica Liquids and Glasses Using Atomistic Simulations and Machine Learning written by Zheng Yu and published by . This book was released on 2022 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Glass materials are found all around us, but fundamental questions about the nature of their amorphous structures and formation processes remain unsolved after decades of research. In this dissertation, silica, an archetype glass former, is taken as an example glass for investigations into glass structures, thermodynamics, dynamics, two-level systems (TLS), and atomic interactions based on molecular dynamics simulations and machine learning methods. Specifically, we investigate the structure-thermodynamic stability relationship using a library of silica inherent structures generated from melt-quench and replica exchange molecular dynamics simulations. Based on machine learning, we find that short-range and medium-range features play very different roles on the glass stability across the liquid and glass regions. We then revisit an interesting dynamical transition in silica liquid, the fragile-to-strong transition (FTS), from the perspective of microscopic dynamics. By machine learning to classify atomic rearrangements, the FTS is found to originate from the two types of energy barriers in silica, representing a fast and a slow microscopic dynamics channel. The fast channel controlled by the short-range defects closes rapidly with decreasing temperature, causing the fragility crossover. A similar approach is also applied to investigate TLS. We predict TLS densities in a large number of inherent structures with a variety of glass stability using machine learning and verify them using molecular dynamics simulations. We find a decrease in the TLS density with the fictive temperature, which can be described by a quadratic function as suggested by the random first-order transition theory. Lastly, we introduce a linear machine learning force matching approach that can directly extract pair atomic interactions from ab initio calculations in amorphous materials. This approach is applied to silica to understand the atomic interactions within its structure and develop a new classical force field. Through the comprehensive fundamental investigations on the nature of silica glass and liquid, I hope the understandings and methods presented in this dissertation can be transferred to study other glass-forming systems.

Book Predicting the Young s Modulus of Silicate Glasses by Molecular Dynamics Simulations and Machine Learning

Download or read book Predicting the Young s Modulus of Silicate Glasses by Molecular Dynamics Simulations and Machine Learning written by Kai Yang and published by . This book was released on 2020 with total page 85 pages. Available in PDF, EPUB and Kindle. Book excerpt: Understanding the compositional dependence of properties of silicate glass is critical to design novel glasses for various technology applications. With the development in molecular dynamics simulations and machine learning techniques, a combined and fully computational approach, which is able to reveal the relationship between glass composition and its mechanical properties, can be developed and served as a guide prior to experiments and manufacturing. On one hand, machine learning is a powerful tool to predict the properties based on the existing database. On the other hand, molecular dynamics simulation cannot only produce sufficient data points for machine learning models but also provide a detailed picture of the atomic structure of glasses. This atomic-scale knowledge from molecular dynamics simulation contains an intrinsic relationship between glass compositions and their mechanical properties. Here, we first use molecular dynamics simulation to generate the dataset for calcium aluminosilicate glasses and apply different machine learning models to predict their Young's modulus using glass compositions in Chapter 1. Next, we apply topological constraint theory to quantify the atomic structures of simulated glasses and use this knowledge to predict Young's modulus for calcium aluminosilicate glass family in Chapter 2. Last, in Chapter 3, we propose a fully analytical model to link the network topology with glass compositions.

Book Encyclopedia of Glass Science  Technology  History  and Culture Two Volume Set

Download or read book Encyclopedia of Glass Science Technology History and Culture Two Volume Set written by Pascal Richet and published by John Wiley & Sons. This book was released on 2021-02-05 with total page 1568 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Encyclopedia begins with an introduction summarizing itsscope and content. Glassmaking; Structure of Glass, GlassPhysics,Transport Properties, Chemistry of Glass, Glass and Light,Inorganic Glass Families, Organic Glasses, Glass and theEnvironment, Historical and Economical Aspect of Glassmaking,History of Glass, Glass and Art, and outlinepossible newdevelopments and uses as presented by the best known people in thefield (C.A. Angell, for example). Sections and chapters arearranged in a logical order to ensure overall consistency and avoiduseless repetitions. All sections are introduced by a briefintroduction and attractive illustration. Newly investigatedtopics will be addresses, with the goal of ensuring that thisEncyclopedia remains a reference work for years to come.

Book Molecular Dynamics Simulation of Silicate Glasses and Their Surfaces

Download or read book Molecular Dynamics Simulation of Silicate Glasses and Their Surfaces written by Xianglong Yuan and published by . This book was released on 2000 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Silicate Glasses and Melts

Download or read book Silicate Glasses and Melts written by Bjorn O. Mysen and published by Elsevier. This book was released on 2018-11-27 with total page 720 pages. Available in PDF, EPUB and Kindle. Book excerpt: Silicate Glasses and Melts, Second Edition describes the structure-property-composition relationships for silicate glasses and melts from a geological and industrial perspective. Updated sections include (i) characterization of silicate melt and COHN fluid structure (with and without dissolved silicate components) with pressure, temperature, and redox conditions and responses of structural variables to chemical composition, (ii) determination of solubility and solution mechanisms of COHN volatiles in silicate melts and minerals and of solubility and solution mechanisms of silicate components in COHN fluids, and (iii) effects of very high pressure on structure and properties of melts and glasses. This new book is an essential resource for researchers in a number of fields, including geology, geophysics, geoscience, volcanology, material science, glass science, petrology and mineralogy. Brings together multidisciplinary research scattered across the scientific literature into one reference, with a focus on silicate melts and their application to natural systems Emphasizes linking melt properties to melt structure Includes a discussion of the pros and cons of the use of glass as a proxy for melt structure and properties Written by highly regarded experts in the field who, among other honors, were the 2006 recipients of the prestigious G.W. Morey award of the American Ceramic Society

Book Molecular Dynamics Simulations of the Structure and Failure of Silicate Glasses

Download or read book Molecular Dynamics Simulations of the Structure and Failure of Silicate Glasses written by Laura R. V. Adkins and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Dynamics of Glassy  Crystalline and Liquid Ionic Conductors

Download or read book Dynamics of Glassy Crystalline and Liquid Ionic Conductors written by Junko Habasaki and published by Springer. This book was released on 2016-10-19 with total page 614 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book discusses the physics of the dynamics of ions in various ionically conducting materials, and applications including electrical energy generation and storage. The experimental techniques for measurements and characterization, molecular dynamics simulations, the theories of ion dynamics, and applications are all addressed by the authors, who are experts in their fields. The experimental techniques of measurement and characterization of dynamics of ions in glassy, crystalline, and liquid ionic conductors are introduced with the dual purpose of introducing the reader to the experimental activities of the field, and preparing the reader to understand the physical quantities derived from experiments. These experimental techniques include calorimetry, conductivity relaxation, nuclear magnetic resonance, light scattering, neutron scattering, and others. Methods of molecular dynamics simulations are introduced to teach the reader to utilize the technique for practical applications to specific problems. The results elucidate the dynamics of ions on some issues that are not accessible by experiments. The properties of ion dynamics in glassy, crystalline and liquid ionic conductors brought forth by experiments and simulations are shown to be universal, i.e. independent of physical and chemical structure of the ionic conductor as long as ion-ion interaction is the dominant factor. Moreover these universal properties of ion dynamics are shown to be isomorphic to other complex interacting systems including the large class of glass-forming materials with or without ionic conductivity.By covering the basic concepts, theories/models, experimental techniques and data, molecular dynamics simulations, and relating them together, Dynamics of Glassy, Crystalline and Liquid Ionic Conductors will be of great interest to many in basic and applied research areas from the broad and diverse communities of condensed matter physicists, chemists, materials scientists and engineers. The book also provides the fundamentals for an introduction to the field and it is written in such a way that can be used for teaching courses either at the undergraduate or graduate level in academic institutions.

Book Investigating the Driving Force of Glass Relaxation for Flexible and Over Constrained Sodium Silicate Glasses by Molecular Dynamics Simulations

Download or read book Investigating the Driving Force of Glass Relaxation for Flexible and Over Constrained Sodium Silicate Glasses by Molecular Dynamics Simulations written by Weiying Song and published by . This book was released on 2019 with total page 55 pages. Available in PDF, EPUB and Kindle. Book excerpt: Topological constraint theory classifies network glasses into three categories, viz., flexible, isostatic, and stressed-rigid, where flexible glasses comprise fewer independent constraints than atomic degrees of freedom and stressed-rigid glasses have more topological constraints than atomic degrees of freedom. For flexible glasses, based on MD simulations of a sodium silicate glass with varying cooling rate (from 0.001 to 100 K/ps), we show that thermal history primarily affects the medium-range order structure, while the short-range order is largely unaffected over the range of cooling rates simulated. This results in a decoupling between the enthalpy and volume relaxation functions, where the enthalpy quickly plateaus as the cooling rate decreases, whereas density exhibits a slower relaxation. We also show that relaxation occurs through the transformation of small silicate rings into larger ones. We demonstrate that this mechanism is driven by the fact that small rings (

Book Molecular Dynamics Simulations of Disordered Materials

Download or read book Molecular Dynamics Simulations of Disordered Materials written by Carlo Massobrio and published by Springer. This book was released on 2015-04-22 with total page 540 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a unique reference work in the area of atomic-scale simulation of glasses. For the first time, a highly selected panel of about 20 researchers provides, in a single book, their views, methodologies and applications on the use of molecular dynamics as a tool to describe glassy materials. The book covers a wide range of systems covering "traditional" network glasses, such as chalcogenides and oxides, as well as glasses for applications in the area of phase change materials. The novelty of this work is the interplay between molecular dynamics methods (both at the classical and first-principles level) and the structure of materials for which, quite often, direct experimental structural information is rather scarce or absent. The book features specific examples of how quite subtle features of the structure of glasses can be unraveled by relying on the predictive power of molecular dynamics, used in connection with a realistic description of forces.

Book Structural Simulations of Metallic Glasses

Download or read book Structural Simulations of Metallic Glasses written by Li-Wei Song and published by . This book was released on 1983 with total page 86 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Biocompatible Glasses

Download or read book Biocompatible Glasses written by Juliana Marchi and published by Springer. This book was released on 2016-11-30 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on the applications of bioglasses in the biomedical field. It starts with the history and evolution of bioglasses before moving on to the structure and percolation theory, and lastly investigating their current and potential future applications in various fields including dentistry, tissue engineering, bone regeneration, ophthalmology, and drug delivery. The chapters were written by a team of international experts in the field and will be of great interest not only to material scientists, but also to medical doctors and other health sector professionals.

Book Handbook of Glass Properties

Download or read book Handbook of Glass Properties written by Narottam P. Bansal and published by Elsevier. This book was released on 2013-10-22 with total page 691 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume is a compilation of data on the properties of glasses. The authors have critically examined and correlated the most reliable data on the properties of multicomponent commercial silicate glasses, vitreous silica, and binary and ternary laboratory glasses. Thermodynamic, thermal, mechanical, electrical, and transport properties are covered. Measurement methods and appropriate theories are also discussed.

Book Fundamentals of Inorganic Glasses

Download or read book Fundamentals of Inorganic Glasses written by Arun K. Varshneya and published by Elsevier. This book was released on 2019-05-09 with total page 753 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamentals of Inorganic Glasses, Third Edition, is a comprehensive reference on the field of glass science and engineering that covers numerous, significant advances. This new edition includes the most recent advances in glass physics and chemistry, also discussing groundbreaking applications of glassy materials. It is suitable for upper level glass science courses and professional glass scientists and engineers at industrial and government labs. Fundamental concepts, chapter-ending problem sets, an emphasis on key ideas, and timely notes on suggested readings are all included. The book provides the breadth required of a comprehensive reference, offering coverage of the composition, structure and properties of inorganic glasses. Clearly develops fundamental concepts and the basics of glass science and glass chemistry Provides a comprehensive discussion of the composition, structure and properties of inorganic glasses Features a discussion of the emerging applications of glass, including applications in energy, environment, pharmaceuticals, and more Concludes chapters with problem sets and suggested readings to facilitate self-study