EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Atomistic Simulations of Defect Nucleation and Free Volume in Nanocrystalline Materials

Download or read book Atomistic Simulations of Defect Nucleation and Free Volume in Nanocrystalline Materials written by Garritt J. Tucker and published by . This book was released on 2011 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Atomistic simulations are employed in this thesis to investigate defect nucleation and free volume of grain boundaries and nanocrystalline materials. Nanocrystalline materials are of particular interest due to their improved mechanical properties and alternative strain accommodation processes at the nanoscale. These processes, or deformation mechanisms, within nanocrystalline materials are strongly dictated by the larger volume fraction of grain boundaries and interfaces due to smaller average grain sizes. The behavior of grain boundaries within nanocrystalline materials is still largely unknown. One reason is that experimental investigation at this scale is often difficult, time consuming, expensive, or impossible with current resources. Atomistic simulations have shown the potential to probe fundamental behavior at these length scales and provide vital insight into material mechanisms. Therefore, work conducted in this thesis will utilize atomistic simulations to explore structure-property relationships of face-centered-cubic grain boundaries, and investigate the deformation of nanocrystalline copper as a function of average grain size. Volume-averaged kinematic metrics are formulated from continuum mechanics theory to estimate nonlocal deformation fields and probe the nanoscale features unique to strain accommodation mechanisms in nanocrystalline metals. The kinematic metrics are also leveraged to explore the tensile deformation of nanocrystalline copper at 10K. The distribution of different deformation mechanisms is calculated and we are able to partition the role of competing mechanisms in the overall strain of the nanocrystalline structure as a function of grain size. Grain boundaries are observed to be influential in smaller grained structures, while dislocation glide is more influential as grain size increases. Under compression, however, the resolved compressive normal stress on interfaces hinders grain boundary plasticity, leading to a tension-compression asymmetry in the strength of nanocrystalline copper. The mechanisms responsible for the asymmetry are probed with atomistic simulations and the volume-averaged metrics. Finally, the utility of the metrics in capturing nonlocal nanoscale deformation behavior and their potential to inform higher-scaled models is discussed.

Book Diffusion and Defect Data

Download or read book Diffusion and Defect Data written by and published by . This book was released on 2004 with total page 766 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Atomistic Simulation of Nanocrystalline Materials

Download or read book Atomistic Simulation of Nanocrystalline Materials written by and published by . This book was released on 1995 with total page 3 pages. Available in PDF, EPUB and Kindle. Book excerpt: Atomistic simulations show that high-energy grain boundaries in nanocrystalline copper and nanocrystalline silicon are highly disordered. In the case of silicon the structures of the grain boundaries are essentially indistinguishable from that of bulk amorphous silicon. Based on a free-energy argument, we suggest that below a critical grain size nanocrystalline materials should be unstable with respect to the amorphous phase.

Book Defects and Diffusion in Metals

Download or read book Defects and Diffusion in Metals written by and published by . This book was released on 2004 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Damage Tolerance and Mechanics of Interfaces in Nanostructured Metals

Download or read book Damage Tolerance and Mechanics of Interfaces in Nanostructured Metals written by Daniel J. Foley and published by . This book was released on 2017 with total page 378 pages. Available in PDF, EPUB and Kindle. Book excerpt: The concept of interface driven properties in crystalline metals has been one of the most intensely discussed topics in materials science for decades. Since the 1980s researchers have been exploring the concept of grain boundary engineering as route for tuning properties such as fracture toughness and irradiation resistance. This is especially true in ultra-fine grained and nanocrystalline materials where grain boundary mediated properties become dominant. More recently, materials composed of hierarchical nanostructures, such as amorphous-crystalline nanolaminates, have attracted considerable attention due to their favorable properties, ease of manufacture and highly tunable microstructure. While both grain boundary engineering and hierarchical nanostructures have shown promise there are still questions remaining regarding the role of specific attributes of the microstructure (such as grain boundaries, grain/layer size and inter/intralayer morphology) in determining material properties. This thesis attempts to address these questions by using atomistic simulations to perform deformation and damage loading studies on a series of nanolaminate and bicrystalline structures. During the course of this thesis the roles of layer thickness, interlayer structure and interlayer chemistry on the mechanical properties of Ni-NiX amorphous-crystalline nanolaminates were explored using atomistic simulations. This thesis found that layer thickness/thickness ratio and amorphous layer chemistry play a crucial role in yield strength and Young's modulus. Analysis of the deformation mechanisms at the atomic scale revealed that structures containing single crystalline, crystalline layers undergo plastic deformation when shear transformation zones form in the amorphous layer and impinge on the amorphous-crystalline interface, leading to dislocation emission. However, structures containing nanocrystalline, crystalline layers (both equiaxed and columnar nanocrystalline) undergo plastic deformation through a combination of grain boundary sliding and grain boundary mediated dislocation nucleation. Since grain boundaries were found to play a critical role as sources and sinks for dislocations in amorphous-crystalline nanolaminates a follow-up study on the effect of grain boundary character on damage accumulation/accommodation in copper symmetric tilt grain boundaries was performed. This study found that grain boundaries will become saturated with damage, a state where grain boundary energy and grain boundary free volume oscillate about a plateau during continuous defect loading (vacancy, interstitial and frenkel pair loading were all considered). Further, grain boundary character (specifically equilibrium grain boundary energy) was strongly correlated to the damage accommodation behavior of grain boundaries in copper. Finally, a study that attempted to link grain boundary damage saturation behavior to variations in grain boundary mechanical properties was performed. This study found no direct relationships between grain boundary damage saturation behavior and variations in grain boundary properties. The results of this thesis provide researchers with several strategies for tuning the properties of amorphous-crystalline nanolaminates. These strategies include manipulated bulk attributes such as layer thickness and morphology as well as manipulation of microscale attributes such as grain boundary engineering. Finally, this thesis provides valuable insight into the damage loading/accommodation behavior of FCC symmetric tilt grain boundaries.

Book Atomistic Simulations of the Role of Dopant Atoms in Grain Growth and Deformation in Nanocrystalline Materials

Download or read book Atomistic Simulations of the Role of Dopant Atoms in Grain Growth and Deformation in Nanocrystalline Materials written by Paul Christopher Millett and published by . This book was released on 2006 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Fatigue and Fracture of Nanostructured Materials

Download or read book Fatigue and Fracture of Nanostructured Materials written by Pasquale Cavaliere and published by Springer Nature. This book was released on 2020-10-27 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the main approaches for production and synthesis of nanostructured metals and alloys, taking into account the fatigue behavior of materials in additive manufactured components. Depending on the material type, form, and application, a deep discussion of fatigue properties and crack behavior is also provided. Pure nanostructured metals, complex alloys and composites are further considered. Prof. Cavaliere’s examination is supported by the most up-to-date understanding from the scientific literature along with a thorough presentation of theory. Bringing together the widest range of perspective on its topic, the book is ideal for materials researchers, professional engineers in industry, and students interested in nanostructured materials, fracture/fatigue mechanics, and additive manufacturing. Describes in detail the relevance of nanostructures in additive manufacturing technologies; Includes sufficient breadth and depth on theoretical modelling of fatigue and crack behavior for use in the classroom; Identifies many open questions regarding different theories through experimental finding; Contextualizes the latest scientific results for readers in industry.

Book Understanding the Mechanistic Role of Grain Boundaries on the Strength and Deformation of Nanocrystalline Metals Using Atomistic Simulations

Download or read book Understanding the Mechanistic Role of Grain Boundaries on the Strength and Deformation of Nanocrystalline Metals Using Atomistic Simulations written by Satish Rajaram and published by . This book was released on 2019 with total page 230 pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanocrystalline (NC) materials, defined structurally by having average grain sizes less than 100nm, exhibit a number of enhanced mechanical properties such as ultrahigh strength, improved wear resistance and greater resistance to fatigue crack initiation compared to coarser grained polycrystalline (PC) materials. NC materials exhibit these improved properties, in part, due to the increased grain boundary (GB) volume fraction. NC materials strength increases with decreasing grain size, known as the Hall-Petch (HP) effect often resulting in a peak strength between 10-20nm. Studies have shown that NC materials strength decreases due to the shift from dislocation-dominant to GB-dominant deformation mechanisms in the plastic flow regime as average grain size decreases below 10-20nm. While the potential improved properties are of interest, the application of NC materials are hindered due to microstructural instability i.e., grain growth to reduce the total energy of the system, thus degrading desired mechanical properties. Numerous studies have looked at avenues to stabilize NC microstructure, namely through thermodynamics and kinetics, alloying has been one significant strategy used to stabilize NC materials. As these processes are used to stabilize NC microstructures to thermally-induce grain growth, they add additional uncertainty as the deformation and GB behavior of pure NC materials are still not fully understood. Experimental work on NC materials is difficult due to the length scale being investigated as it is difficult to manufacture and can be time consuming to analyze with current technology. Atomistic simulations have shown the potential to investigate fundamental behavior at the nanoscale and provide important insight in the mechanisms that drive the mechanical behavior of NC materials. This thesis will use atomistic simulations to study the structure-property relationship of face-centered-cubic (fcc) metals by focusing on GBs to investigate the strength of NC nickel. During the course of this thesis, four aspects that govern NC behavior will be studied, yielding, plasticity, thermal effects, and GB disorder to elucidate deeper insight into the underlying deformation mechanisms that control the strength of FCC NC metals i.e., flow stress, in the grain size regime 6 to 20nm.

Book Advances in Heterogeneous Material Mechanics 2008

Download or read book Advances in Heterogeneous Material Mechanics 2008 written by Jinghong Fan and published by DEStech Publications, Inc. This book was released on 2008 with total page 1757 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The International Conference on Heterogeneous Material Mechanics (ICHMM) in Huangshan, China, June 3-8, 2008 follows the successful inaugural ICHMM held in ChongQing, China in June, 2004. The ICHMM series is the first international forum that focuses exclusively on various issues related to the behavior of heterogeneous materials in a broad sense. The object of the ICHMM is to present and publicize integrated scientific and engineering approaches to the measurement and modeling of phenomena at the interface of materials science, physics, chemistry, biology, and solid mechanics."--Preface, p. xxxix.

Book Dislocations in Solids

Download or read book Dislocations in Solids written by and published by Elsevier. This book was released on 2011-09-22 with total page 551 pages. Available in PDF, EPUB and Kindle. Book excerpt: New models for dislocation structure and motion are presented for nanocrystals, nucleation at grain boundaries, shocked crystals, interphase interfaces, quasicrystals, complex structures with non-planar dislocation cores, and colloidal crystals. A review of experimentally established main features of the magnetoplastic effect with their physical interpretation explains many diverse results of this type. The model has many potential applications for forming processes influenced by magnetic fields. - Dislocation model for the magnetoplastic effect - New mechanism for dislocation nucleation and motion in nanocrystals - New models for the dislocation structure of interfaces between crystals with differing crystallographic structure - A unified view of dislocations in quasicrystals, with a new model for dislocation motion - A general model of dislocation behavior in crystals with non-planar dislocation cores - Dislocation properties at high velocities - Dislocations in colloidal crystals

Book The Structure property Relation in Nanocrystalline Materials

Download or read book The Structure property Relation in Nanocrystalline Materials written by Tao Xu and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Nanocrystalline materials have been under extensive study in the past two decades. The reduction in grain size induces many abnormal behaviors in the properties of nanocrystalline materials, that have been investigated systematically and quantitatively. As one of the most fundamental relations in materials science, the structure-property relation should still apply on materials of nano-scale grain sizes. The characterization of grain boundaries (GBs) and related entities remains a big obstacle to understanding the structure-property relation in nanocrystalline materials. It is challenging experimentally to determine the topological properties of polycrystalline materials due to the complex and disordered grain boundary network presented in the nanocrystalline materials. The constantly improving computing power enables us to study the structure-property relation in nanocrystalline materials via Monte Carlo and molecular dynamic simulations. : In this study, we will first propose a geometrical construction method based on inverse Monte Carlo simulation to generate digital microstructures with desired topological properties such as grain size, interface area, triple junction length as well as their statistical distributions. The influences on the grain shapes by different topological properties are studied. Two empirical geometrical laws are examined including the Lewis rule and Aboav-Weaire law. Secondly, defect free nanocrystalline Copper (nc-Cu) samples are generated by filling atoms into the Voronoi structure and then relaxed by molecular dynamics simulations. Atoms in the relaxed nc-Cu samples are then characterized into grain atoms, GB interface atoms, GB triple junction atoms and vertex atoms using a newly proposed method. Atoms in each GB entity can also be identified. Next, the topological properties of nc-Cu samples before and after relaxation are calculated and compared, indicating that there exists a physical limit in the number of atoms to form a stable grain boundary interface and triple junction in nanocrystalline materials. In addition, we are able to obtain the statistical averages of geometrical and thermal properties of atoms across each GB interfaces, the so-called GB profiles, and study the grain size, misorientation and temperature effects on the microstructures in nanocrystalline materials. Finally, nc-Cu samples with different topological properties are deformed under simple shear using MD simulation in an attempt to study the structure-property relation in nanocrystalline materials.

Book Generalized Continua as Models for Materials

Download or read book Generalized Continua as Models for Materials written by Holm Altenbach and published by Springer Science & Business Media. This book was released on 2014-07-08 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents contributions describing the micro- and macro-behaviours, new existence and uniqueness theorems, the formulation of multi-scale problems, etc. and now it is time to ponder again the state of matter and to discuss new trends and applications. The main focus is directed on the following items - Modelling and simulation of materials with significant microstructure, - Generalized continua as a result of multi-scale models, - Multi-field actions on materials resulting in generalized material models, and - Comparison with discrete modelling approaches

Book MY RESEARCH PUBLICATIONS PROJECTS LIST ENGINEERING SOCIAL  WORLD ONE GOVERNMENT  SCIENCE LAWS MODIFIED COMBINED TURBINE GENERATOR Niagara source FOR ALL

Download or read book MY RESEARCH PUBLICATIONS PROJECTS LIST ENGINEERING SOCIAL WORLD ONE GOVERNMENT SCIENCE LAWS MODIFIED COMBINED TURBINE GENERATOR Niagara source FOR ALL written by Prof.Dr.MURUGAVEL.Rathinam and published by Prof.Dr.MURUGAVEL.Rathinam. This book was released on 2024-08-31 with total page 86 pages. Available in PDF, EPUB and Kindle. Book excerpt: MY RESEARCH PUBLICATIONS,PROJECTS LIST(ENGINEERING,SOCIAL, WORLD ONE GOVERNMENT),SCIENCE LAWS MODIFIED,COMBINED TURBINE GENERATOR,Niagara source(FOR ALL)

Book Nanostructures  Synthesis  Functional Properties and Application

Download or read book Nanostructures Synthesis Functional Properties and Application written by Thomas Tsakalakos and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 694 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Advanced Study Institute on Synthesis, Functional Properties and Applications of Nanostructures, held at the Knossos Royal Village, Heraklion, Crete, Greece, July 26, 2002 - August 4, 2002, successfully reviewed the state-of-the-art of nanostructures and nanotechnology. It was concluded that Nanotechnology is widely agreed to be the research focus that will lead to the next generation of breakthroughs in science and engineering. There are three cornerstones to the expectation that Nanotechnology will yield revolutionary advances in understanding and application: • Breakthroughs in properties that arise from materials fabricated from the nanoscale. • Synergistic behavior that arise from the combination of disparate types of materials (soft vs. hard, organic vs. inorganic, chemical vs. biological vs. solid state) at the nanoscale. • Exploitation of natural (e.g. chemical and biological) assembly mechanisms that can accomplish structural control at the nanoscale. It is expected that this will lead to paradigms for assembling bio-inspired functional systems that accomplish desirable properties that are either unavailable or prohibitively expensive using top-down approaches.

Book Metals Abstracts Index

Download or read book Metals Abstracts Index written by and published by . This book was released on 1996 with total page 1622 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Crystal Plasticity Finite Element Methods

Download or read book Crystal Plasticity Finite Element Methods written by Franz Roters and published by John Wiley & Sons. This book was released on 2011-08-04 with total page 188 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by the leading experts in computational materials science, this handy reference concisely reviews the most important aspects of plasticity modeling: constitutive laws, phase transformations, texture methods, continuum approaches and damage mechanisms. As a result, it provides the knowledge needed to avoid failures in critical systems udner mechanical load. With its various application examples to micro- and macrostructure mechanics, this is an invaluable resource for mechanical engineers as well as for researchers wanting to improve on this method and extend its outreach.