EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Atomistic Modeling of Physical Properties

Download or read book Atomistic Modeling of Physical Properties written by Lucien Monnerie and published by Springer. This book was released on 1994-07-22 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: With contributions by: R.H. Boyd; B.G. Sumpter, D.W. Noid, G.L. Liang, B. Wunderlich; M.D. Ediger, D.B. Adolf; R.-J. Roe; I. Bahar, B. Erman, L. Monnerie; A.A. Gusev, F. Müller-Plathe, W.F. van Gunsteren, U.W. Suter; L.R. Dodd, D.N. Theodorou; E. Leontidis, J.J. de Pablo, M. Laso, U.W. Suter; K.S. Schweizer.

Book Metal Oxide Nanoparticles  2 Volume Set

Download or read book Metal Oxide Nanoparticles 2 Volume Set written by Oliver Diwald and published by John Wiley & Sons. This book was released on 2021-09-14 with total page 903 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metal Oxide Nanoparticles A complete nanoparticle resource for chemists and industry professionals Metal oxide nanoparticles are integral to a wide range of natural and technological processes—from mineral transformation to electronics. Additionally, the fields of engineering, electronics, energy technology, and electronics all utilize metal oxide nanoparticle powders. Metal Oxide Nanoparticles: Formation, Functional Properties, and Interfaces presents readers with the most relevant synthesis and formulation approaches for using metal oxide nanoparticles as functional materials. It covers common processing routes and the assessment of physical and chemical particle properties through comprehensive and complementary characterization methods. This book will serve as an introduction to nanoparticle formulation, their interface chemistry and functional properties at the nanoscale. It will also act as an in-depth resource, sharing detailed information on advanced approaches to the physical, chemical, surface, and interface characterization of metal oxide nanoparticle powders and dispersions. Addresses the application of metal oxide nanoparticles and its economic impact Examines particle synthesis, including the principles of selected bottom-up strategies Explores nanoparticle formulation—a selection of processing and application routes Discusses the significance of particle surfaces and interfaces on structure formation, stability and functional materials properties Covers metal oxide nanoparticle characterization at different length scales With this valuable resource, academic researchers, industrial chemists, and PhD students can all gain insight into the synthesis, properties, and applications of metal oxide nanoparticles.

Book Atomistic Modeling of Materials Failure

Download or read book Atomistic Modeling of Materials Failure written by Markus J. Buehler and published by Springer Science & Business Media. This book was released on 2008-08-07 with total page 547 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is an introduction to molecular and atomistic modeling techniques applied to fracture and deformation of solids, focusing on a variety of brittle, ductile, geometrically confined and biological materials. The overview includes computational methods and techniques operating at the atomic scale, and describes how these techniques can be used to model cracks and other deformation mechanisms. The book aims to make new molecular modeling techniques available to a wider community.

Book Atomistic Simulation of Anistropic Crystal Structures at Nanoscale

Download or read book Atomistic Simulation of Anistropic Crystal Structures at Nanoscale written by Jia Fu and published by BoD – Books on Demand. This book was released on 2019-05-10 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: Multiscale simulations of atomistic/continuum coupling in computational materials science, where the scale expands from macro-/micro- to nanoscale, has become a hot research topic. These small units, usually nanostructures, are commonly anisotropic. The development of molecular modeling tools to describe and predict the mechanical properties of structures reveals an undeniable practical importance. Typical anisotropic structures (e.g. cubic, hexagonal, monoclinic) using DFT, MD, and atomic finite element methods are especially interesting, according to the modeling requirement of upscaling structures. It therefore connects nanoscale modeling and continuous patterns of deformation behavior by identifying relevant parameters from smaller to larger scales. These methodologies have the prospect of significant applications. I would like to recommend this book to both beginners and experienced researchers.

Book Viscoelasticity Atomistic Models Statistical Chemistry

Download or read book Viscoelasticity Atomistic Models Statistical Chemistry written by Akihiro Abe and published by Springer. This book was released on 2003-07-01 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: With contributions by numerous experts

Book Advances in Polymer Science

Download or read book Advances in Polymer Science written by and published by . This book was released on 1965 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: Beginning with 17, each issue contains a cumulative author index.

Book Conformational Motion and disorder in low and high molecular mass crystals

Download or read book Conformational Motion and disorder in low and high molecular mass crystals written by and published by . This book was released on 1988 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Computer Simulations in Condensed Matter  From Materials to Chemical Biology  Volume 2

Download or read book Computer Simulations in Condensed Matter From Materials to Chemical Biology Volume 2 written by Mauro Ferrario and published by Springer. This book was released on 2007-04-16 with total page 608 pages. Available in PDF, EPUB and Kindle. Book excerpt: This extensive and comprehensive collection of lectures by world-leading experts in the field introduces and reviews all relevant computer simulation methods and their applications in condensed matter systems. Volume 2 offers surveys on numerical experiments carried out for a great number of systems, ranging from materials sciences to chemical biology, including supercooled liquids, spin glasses, colloids, polymers, liquid crystals, biological membranes and folding proteins.

Book Atomistic Simulation of Materials

Download or read book Atomistic Simulation of Materials written by David J. Srolovitz and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains proceedings of an international symposium on Atomistic th Simulation of Materials: Beyond Pair Potentials which was held in Chicago from the 25 th to 30 of September 1988, in conjunction with the ASM World Materials Congress. This symposium was financially supported by the Energy Conversion and Utilization Technology Program of the U. S Department of Energy and by the Air Force Office of Scientific Research. A total of fifty four talks were presented of which twenty one were invited. Atomistic simulations are now common in materials research. Such simulations are currently used to determine the structural and thermodynamic properties of crystalline solids, glasses and liquids. They are of particular importance in studies of crystal defects, interfaces and surfaces since their structures and behavior playa dominant role in most materials properties. The utility of atomistic simulations lies in their ability to provide information on those length scales where continuum theory breaks down and instead complex many body problems have to be solved to understand atomic level structures and processes.

Book Modeling Materials

    Book Details:
  • Author : Ellad B. Tadmor
  • Publisher : Cambridge University Press
  • Release : 2011-11-24
  • ISBN : 1139500651
  • Pages : 789 pages

Download or read book Modeling Materials written by Ellad B. Tadmor and published by Cambridge University Press. This book was released on 2011-11-24 with total page 789 pages. Available in PDF, EPUB and Kindle. Book excerpt: Material properties emerge from phenomena on scales ranging from Angstroms to millimeters, and only a multiscale treatment can provide a complete understanding. Materials researchers must therefore understand fundamental concepts and techniques from different fields, and these are presented in a comprehensive and integrated fashion for the first time in this book. Incorporating continuum mechanics, quantum mechanics, statistical mechanics, atomistic simulations and multiscale techniques, the book explains many of the key theoretical ideas behind multiscale modeling. Classical topics are blended with new techniques to demonstrate the connections between different fields and highlight current research trends. Example applications drawn from modern research on the thermo-mechanical properties of crystalline solids are used as a unifying focus throughout the text. Together with its companion book, Continuum Mechanics and Thermodynamics (Cambridge University Press, 2011), this work presents the complete fundamentals of materials modeling for graduate students and researchers in physics, materials science, chemistry and engineering.

Book Dislocation Modelling of Physical Systems

Download or read book Dislocation Modelling of Physical Systems written by M.F. Ashby and published by Elsevier. This book was released on 2013-10-22 with total page 598 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dislocation Modelling of Physical Systems contains the Proceedings of the International Conference held at Gainesville, Florida, USA on June 22-27, 1980. The book emphasizes the growing interest in relating dislocation theoretic concepts to engineering problems. Topic areas chosen ranged from the fundamental, such as properties of single dislocations, to the more applied, such as fracture. The papers are grouped specifically based on the main topics they discuss. These topics include fracture; point defects and dislocations; structure dependence of mechanical behavior; properties of single dislocations; plasticity and geometry of deformation; internal friction effects; and boundaries.

Book Fundamentals of Multiscale Modeling of Structural Materials

Download or read book Fundamentals of Multiscale Modeling of Structural Materials written by Wenjie Xia and published by Elsevier. This book was released on 2022-11-26 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fundamentals of Multiscale Modeling of Structural Materials provides a robust introduction to the computational tools, underlying theory, practical applications, and governing physical phenomena necessary to simulate and understand a wide-range of structural materials at multiple time and length scales. The book offers practical guidelines for modeling common structural materials with well-established techniques, outlining detailed modeling approaches for calculating and analyzing mechanical, thermal and transport properties of various structural materials such as metals, cement/concrete, polymers, composites, wood, thin films, and more.Computational approaches based on artificial intelligence and machine learning methods as complementary tools to the physics-based multiscale techniques are discussed as are modeling techniques for additively manufactured structural materials. Special attention is paid to how these methods can be used to develop the next generation of sustainable, resilient and environmentally-friendly structural materials, with a specific emphasis on bridging the atomistic and continuum modeling scales for these materials. - Synthesizes the latest cutting-edge computational multiscale modeling techniques for an array of structural materials - Emphasizes the foundations of the field and offers practical guidelines for modeling material systems with well-established techniques - Covers methods for calculating and analyzing mechanical, thermal and transport properties of various structural materials such as metals, cement/concrete, polymers, composites, wood, and more - Highlights underlying theory, emerging areas, future directions and various applications of the modeling methods covered - Discusses the integration of multiscale modeling and artificial intelligence

Book Coarse Grained Modeling of Biomolecules

Download or read book Coarse Grained Modeling of Biomolecules written by Garegin A. Papoian and published by CRC Press. This book was released on 2017-10-30 with total page 399 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The chapters in this book survey the progress in simulating biomolecular dynamics.... The images conjured up by this work are not yet universally loved, but are beginning to bring new insights into the study of biological structure and function. The future will decide whether this scientific movement can bring forth its Picasso or Modigliani." –from the Foreword by Peter G. Wolynes, Bullard-Welch Foundation Professor of Science, Rice University This book highlights the state-of-art in coarse-grained modeling of biomolecules, covering both fundamentals as well as various cutting edge applications. Coarse-graining of biomolecules is an area of rapid advances, with numerous new force fields having appeared recently and significant progress made in developing a systematic theory of coarse-graining. The contents start with first fundamental principles based on physics, then survey specific state-of-art coarse-grained force fields of proteins and nucleic acids, and provide examples of exciting biological problems that are at large scale, and hence, only amenable to coarse-grained modeling. Introduces coarse-grained models of proteins and nucleic acids. Showcases applications such as genome packaging in nuclei and understanding ribosome dynamics Gives the physical foundations of coarse-graining Demonstrates use of models for large-scale assemblies in modern studies Garegin A. Papoian is the first Monroe Martin Associate Professor with appointments in the Department of Chemistry and Biochemistry and the Institute for Physical Science and Technology at the University of Maryland.

Book Advances in Chemical Physics  Volume 149

Download or read book Advances in Chemical Physics Volume 149 written by Stuart A. Rice and published by John Wiley & Sons. This book was released on 2012-01-31 with total page 245 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Advances in Chemical Physics series the cutting edge of research in chemical physics The Advances in Chemical Physics series provides the chemical physics field with a forum for critical, authoritative evaluations of advances in every area of the discipline. Filled with cutting-edge research reported in a cohesive manner not found elsewhere in the literature, each volume of the Advances in Chemical Physics series serves as the perfect supplement to any advanced graduate class devoted to the study of chemical physics. This volume explores: Quantum Dynamical Resonances in Chemical Reactions: From A + BC to Polyatomic Systems (Kopin Liu) The Multiscale Coarse-Graining Method (Lanyuan Lu and Gregory A. Voth) Molecular Solvation Dynamics from Inelastic X-ray Scattering Measurements (R.H. Coridan and G.C.L. Wong) Polymers Under Confinement (M. Muthukumar) Computational Studies of the Properties of DNA-linked Nanomaterials (One-Sun Lee and George C. Schatz) Nanopores: Single-Molecule Sensors of Nucleic Acid Based Complexes (Amit Meller)

Book Chemical Modelling

    Book Details:
  • Author : Michael Springborg
  • Publisher : Royal Society of Chemistry
  • Release : 2015-11-18
  • ISBN : 1782621156
  • Pages : 362 pages

Download or read book Chemical Modelling written by Michael Springborg and published by Royal Society of Chemistry. This book was released on 2015-11-18 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: Chemical Modelling covers a wide range of disciplines and is the first stop for any materials scientist, biochemist, chemist or molecular physicist wishing to acquaint themselves with major developments and current opinion in the applications and theory of chemical modelling.

Book Inorganic Polymers

Download or read book Inorganic Polymers written by James E. Mark and published by Oxford University Press. This book was released on 2005-04-21 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: Polymer chemistry and technology form one of the major areas of molecular and materials science. This field impinges on nearly every aspect of modern life, from electronics technology, to medicine, to the wide range of fibers, films, elastomers, and structural materials on which everyone depends. Although most of these polymers are organic materials, attention is being focused increasingly toward polymers that contain inorganic elements as well as organic components. The goal of Inorganic Polymers is to provide a broad overview of inorganic polymers in a way that will be useful to both the uninitiated and those already working in this field. There are numerous reasons for being interested in inorganic polymers. One is the simple need to know how structure affects the properties of a polymer, particularly outside the well-plowed area of organic materials. Another is the bridge that inorganic polymers provide between polymer science and ceramics. More and more chemistry is being used in the preparation of ceramics of carefully controlled structure, and inorganic polymers are increasingly important precursor materials in such approaches. This new edition begins with a brief introductory chapter. That is followed with a discussion of the characteristics and characterization of polymers, with examples taken from the field. Other chapters in the book detail the synthesis, reaction chemistry, molecular structure, and uses of polyphosphazenes, polysiloxanes, and polysilanes. The coverage in the second edition has been updated and expanded significantly to cover advances and interesting trends since the first edition appeared. Three new chapters have been added, focusing on ferrocene-based polymers, other phosphorous-containing polymers, and boron-containing polymers; inorganic-organic hybrid composites; and preceramic inorganic polymers.

Book Vibrational Properties of Defective Oxides and 2D Nanolattices

Download or read book Vibrational Properties of Defective Oxides and 2D Nanolattices written by Emilio Scalise and published by Springer. This book was released on 2014-05-28 with total page 157 pages. Available in PDF, EPUB and Kindle. Book excerpt: Ge and III–V compounds, semiconductors with high carrier mobilities, are candidates to replace Si as the channel in MOS devices. 2D materials – like graphene and MoS_2 – are also envisioned to replace Si in the future. This thesis is devoted to the first-principles modeling of the vibrational properties of these novel channel materials. The first part of the thesis focuses on the vibrational properties of various oxides on Ge, making it possible to identify the vibrational signature of specific defects which could hamper the proper functioning of MOSFETs. The second part of the thesis reports on the electronic and vibrational properties of novel 2D materials like silicene and germanene, the Si and Ge 2D counterparts of graphene. The interaction of these 2D materials with metallic and non-metallic substrates is investigated. It was predicted, for the first time, and later experimentally confirmed, that silicene could be grown on a non-metallic template like MoS_2, a breakthrough that could open the door to the possible use of silicene in future nanoelectronic devices.