EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Atomic Scale Experimental and Theoretical Studies of High k Gate Dielectric Interfaces

Download or read book Atomic Scale Experimental and Theoretical Studies of High k Gate Dielectric Interfaces written by Jeong-Hee Ha and published by . This book was released on 2008 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: For several decades, silicon semiconductor devices have been dramatically scaled down to sub-100 nm MOSFET channel lengths in order to achieve higher device density and performance. In this regime, high-k dielectrics which can give large gate capacitances with dielectric films that are physically thicker than corresponding silicon oxide or oxynitride gate dielectrics are needed to reduce the substantial gate leakage current resulting from direct quantum mechanical tunneling across the dielectric layer.

Book Defects in HIgh k Gate Dielectric Stacks

Download or read book Defects in HIgh k Gate Dielectric Stacks written by Evgeni Gusev and published by Springer Science & Business Media. This book was released on 2006-01-27 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: The main goal of this book is to review at the nano and atomic scale the very complex scientific issues that pertain to the use of advanced high dielectric constant (high-k) materials in next generation semiconductor devices. One of the key obstacles to integrate this novel class of materials into Si nano-technology are the electronic defects in high-k dielectrics. It has been established that defects do exist in high-k dielectrics and they play an important role in device operation. The unique feature of this book is a special focus on the important issue of defects. The subject is covered from various angles, including silicon technology, processing aspects, materials properties, electrical defects, microstructural studies, and theory. The authors who have contributed to the book represents a diverse group of leading scientists from academic, industrial and governmental labs worldwide who bring a broad array of backgrounds (basic and applied physics, chemistry, electrical engineering, surface science, and materials science). The contributions to this book are accessible to both expert scientists and engineers who need to keep up with leading edge research, and newcomers to the field who wish to learn more about the exciting basic and applied research issues relevant to next generation device technology.

Book High k Gate Dielectrics

Download or read book High k Gate Dielectrics written by Michel Houssa and published by CRC Press. This book was released on 2003-12-01 with total page 460 pages. Available in PDF, EPUB and Kindle. Book excerpt: The drive toward smaller and smaller electronic componentry has huge implications for the materials currently being used. As quantum mechanical effects begin to dominate, conventional materials will be unable to function at scales much smaller than those in current use. For this reason, new materials with higher electrical permittivity will be requ

Book Physics and Technology of High k Gate Dielectrics 4

Download or read book Physics and Technology of High k Gate Dielectrics 4 written by Samares Kar and published by The Electrochemical Society. This book was released on 2006 with total page 565 pages. Available in PDF, EPUB and Kindle. Book excerpt: This issue covers, in detail, all aspects of the physics and the technology of high dielectric constant gate stacks, including high mobility substrates, high dielectric constant materials, processing, metals for gate electrodes, interfaces, physical, chemical, and electrical characterization, gate stack reliability, and DRAM and non-volatile memories.

Book Dissertation Abstracts International

Download or read book Dissertation Abstracts International written by and published by . This book was released on 2008 with total page 868 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book High k Gate Dielectric Interfaces with Germanium and Silicon germanium Substrates

Download or read book High k Gate Dielectric Interfaces with Germanium and Silicon germanium Substrates written by Liangliang Zhang and published by . This book was released on 2016 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: As transistors scale to their physical limits, germanium and silicon-germanium (SiGe) alloys are both promising candidate metal-oxide-semiconductor field effect transistor (MOSFET) channel materials to extend the roadmap. In this work, I used carefully-controlled atomic layer deposition (ALD) processes and a simple forming gas anneal (FGA), to form TiO2/Al2O3/Ge gate stacks with 0.65 nm EOT and low interface trap densities. For the first time, I applied bilayer gate dielectric stacks to Ge pMOSFETs with sub 1-nm EOT and a subthreshold swing (SS) as low as 71 mV/dec. For the first time, soft x-ray and hard x-ray photoelectron spectroscopy were used to rigorously study the formation of a GeO2 interface layer between an atomic layer deposited gate dielectric and a Ge(100) substrate during forming gas anneal (FGA). A new and simple method was demonstrated to selectively passivate interface traps with energies in the top half of the Ge band gap under annealing conditions that produce a GeO2 interface layer. I also describe how the sensitivity of the interface trap density in metal/Al2O3/Ge MOSCAPs is related to the nature of the H2/N2 anneal and the presence of a gate metal such as Pt that is effective in dissociating H2 to atomic hydrogen. The third part of this work focuses on SiGe substrates. Experiments show that, even though the native oxides of the SiGe channel are removed by 2% HF(aq)/ H2O cyclic cleans, a SiOx/GeOx interfacial layer is formed during Al2O3 ALD. Using Al as the gate metal instead of Pt, Al2O3/SiGe MOSCAPs show C-V curves with minimal frequency dispersion and much smaller Dit response. Experiments reveal that the Al-gate scavenges oxygen from the underlying GeOx, producting a SiOx/SiGe interface with much-reduced Dit.

Book Physics and Technology of High k Gate Dielectrics 5

Download or read book Physics and Technology of High k Gate Dielectrics 5 written by Samares Kar and published by The Electrochemical Society. This book was released on 2007 with total page 676 pages. Available in PDF, EPUB and Kindle. Book excerpt: This issue covers in detail all aspects of the physics and the technology of high dielectric constant gate stacks, including high mobility substrates, high dielectric constant materials, processing, metals for gate electrodes, interfaces, physical, chemical, and electrical characterization, gate stack reliability, and DRAM and non-volatile memories.

Book High Permittivity Gate Dielectric Materials

Download or read book High Permittivity Gate Dielectric Materials written by Samares Kar and published by Springer Science & Business Media. This book was released on 2013-06-25 with total page 515 pages. Available in PDF, EPUB and Kindle. Book excerpt: "The book comprehensively covers all the current and the emerging areas of the physics and the technology of high permittivity gate dielectric materials, including, topics such as MOSFET basics and characteristics, hafnium-based gate dielectric materials, Hf-based gate dielectric processing, metal gate electrodes, flat-band and threshold voltage tuning, channel mobility, high-k gate stack degradation and reliability, lanthanide-based high-k gate stack materials, ternary hafnia and lanthania based high-k gate stack films, crystalline high-k oxides, high mobility substrates, and parameter extraction. Each chapter begins with the basics necessary for understanding the topic, followed by a comprehensive review of the literature, and ultimately graduating to the current status of the technology and our scientific understanding and the future prospects." .

Book Experimental and Theoretical Studies of High k Dielectrics on Silicon

Download or read book Experimental and Theoretical Studies of High k Dielectrics on Silicon written by Ragesh Puthenkovilakam and published by . This book was released on 2004 with total page 580 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book High K Gate Dielectric Materials

    Book Details:
  • Author : Taylor & Francis Group
  • Publisher : Apple Academic Press
  • Release : 2022-07
  • ISBN : 9781774638859
  • Pages : 264 pages

Download or read book High K Gate Dielectric Materials written by Taylor & Francis Group and published by Apple Academic Press. This book was released on 2022-07 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This volume explores and addresses the challenges of high-k gate dielectric materials, one of the major concerns in the evolving semiconductor industry and the International Technology Roadmap for Semiconductors (ITRS). The application of high-k gate dielectric materials is a promising strategy that allows further miniaturization of microelectronic components (or Moore's law). This book presents a broad review of SiO2 materials, including a brief historical note of Moore's law, followed by reliability issues of the SiO2 based MOS transistor. Then it discusses the transition of gate dielectrics with an EOT 1 nm and a selection of high-k materials. A review of the different deposition techniques of different high-k films is also discussed. High-k dielectrics theories (quantum tunneling effects and interface engineering theory) and applications of different novel MOSFET structures, like tunneling FET, are also covered in this book. The volume also looks at the important issues in the future of CMOS technology and presents an analysis of interface charge densities with the high-k material tantalum pentoxide. The issue of CMOS VLSI technology with the high-k gate dielectric materials is covered as is the advanced MOSFET structure, with its working, structure, and modeling. This timely volume addresses the challenges of high-k gate dielectric materials and will prove to be a valuable resource on both the fundamentals and the successful integration of high-k dielectric materials in future IC technology. Key features: Discusses the state-of-the-art in high-k gate dielectric research for MOSFET in the nanoelectronics regime Reviews high-k applications in advanced MOS transistor structures Considers CMOS IC fabrication with high-k gate dielectric materials"--

Book Frontiers In Electronics  With Cd rom    Proceedings Of The Wofe 04

Download or read book Frontiers In Electronics With Cd rom Proceedings Of The Wofe 04 written by Michael S Shur and published by World Scientific. This book was released on 2006-08-10 with total page 774 pages. Available in PDF, EPUB and Kindle. Book excerpt: Frontiers in Electronics reports on the most recent developments and future trends in the electronics and photonics industry. The issues address CMOS, SOI and wide band gap semiconductor technology, terahertz technology, and bioelectronics, providing a unique interdisciplinary overview of the key emerging issues.This volume accurately reflects the recent research and development trends: from pure research to research and development; and its contributors are leading experts in microelectronics, nanoelectronics, and nanophotonics from academia, industry, and government agencies.

Book Physics and Technology of High k Gate Dielectrics II

Download or read book Physics and Technology of High k Gate Dielectrics II written by Samares Kar and published by The Electrochemical Society. This book was released on 2004 with total page 512 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This volume is the proceedings of The Second International Symposium on High Dielectric Constant Materials: Materials Science, Processing, Reliability, and Manufacturing Issues ... and was held during [the] 204th Meeting [of the Electrochemical Society] ..."--P. v.

Book Nanoscaled Semiconductor on Insulator Structures and Devices

Download or read book Nanoscaled Semiconductor on Insulator Structures and Devices written by S. Hall and published by Springer Science & Business Media. This book was released on 2007-07-09 with total page 377 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers combined views on silicon-on-insulator (SOI) nanoscaled electronics from experts in the fields of materials science, device physics, electrical characterization and computer simulation. Coverage analyzes prospects of SOI nanoelectronics beyond Moore’s law and explains fundamental limits for CMOS, SOICMOS and single electron technologies.

Book Leading edge Semiconductor Research

Download or read book Leading edge Semiconductor Research written by Thomas B. Elliot and published by Nova Publishers. This book was released on 2005 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book includes within its scope studies of the structural, electrical, optical and acoustical properties of bulk, low-dimensional and amorphous semiconductors; computational semiconductor physics; interface properties, including the physics and chemistry of heterojunctions, metal-semiconductor and insulator-semiconductor junctions; all multi-layered structures involving semiconductor components. Dopant incorporation. Growth and preparation of materials, including both epitaxial (e.g. molecular beam and chemical vapour methods) and bulk techniques; in situ monitoring of epitaxial growth processes, also included are appropriate aspects of surface science such as the influence of growth kinetics and chemical processing on layer and device properties. The physics of semiconductor electronic and optoelectronic devices are examined , including theoretical modelling and experimental demonstration; all aspects of the technology of semiconductor device and circuit fabrication. Relevant areas of 'molecular electronics' and semiconductor structures incorporating Langmuir-Blodgett films; resists, lithography and metallisation where they are concerned with the definition of small geometry structure. The structural, electrical and optical characterisation of materials and device structures are also included. The scope encompasses materials and device reliability: reliability evaluation of technologies; failure analysis and advanced analysis techniques such as SEM, E-beam, optical emission microscopy, acoustic microscopy techniques; liquid crystal techniques; noise measurement, reliability prediction and simulation; reliability indicators; failure mechanisms, including charge migration, trapping, oxide breakdown, hot carrier effects, electro-migration, stress migration; package- related failure mechanisms; effects of operational and environmental stresses on reliability.

Book 2011 International Conference on Semiconductor Technology for Ultra Large Scale Integrated Circuits and Thin Film Transistors  ULSIC vs  TFT

Download or read book 2011 International Conference on Semiconductor Technology for Ultra Large Scale Integrated Circuits and Thin Film Transistors ULSIC vs TFT written by and published by The Electrochemical Society. This book was released on 2011 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Nanoelectronic Materials  Devices and Modeling

Download or read book Nanoelectronic Materials Devices and Modeling written by Qiliang Li and published by MDPI. This book was released on 2019-07-15 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: As CMOS scaling is approaching the fundamental physical limits, a wide range of new nanoelectronic materials and devices have been proposed and explored to extend and/or replace the current electronic devices and circuits so as to maintain progress with respect to speed and integration density. The major limitations, including low carrier mobility, degraded subthreshold slope, and heat dissipation, have become more challenging to address as the size of silicon-based metal oxide semiconductor field effect transistors (MOSFETs) has decreased to nanometers, while device integration density has increased. This book aims to present technical approaches that address the need for new nanoelectronic materials and devices. The focus is on new concepts and knowledge in nanoscience and nanotechnology for applications in logic, memory, sensors, photonics, and renewable energy. This research on nanoelectronic materials and devices will be instructive in finding solutions to address the challenges of current electronics in switching speed, power consumption, and heat dissipation and will be of great interest to academic society and the industry.

Book Atomic layer deposited High k Gate Oxides on Germanium

Download or read book Atomic layer deposited High k Gate Oxides on Germanium written by Shankar Swaminathan and published by . This book was released on 2010 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Germanium (Ge) has emerged as a promising candidate for surface channels in highly-scaled field-effect-transistors (FETs), as performance and reliability issues are likely to limit the use of conventional Si-based complementary-metal-oxide-semiconductor (CMOS) transistors beyond the 15nm technology node. Lack of a high quality and stable thermal oxide of germanium has prompted interest in the use of high-k (high dielectric-constant) gate dielectrics on Ge channels. An interface passivation layer (IPL) between the high-k film and the Ge substrate appears to be necessary to avoid large defect densities characteristic of atomically-abrupt high-k (ZrO2 or HfO2)/Ge interfaces. Atomic layer deposition (ALD) is a useful high-k metal oxide film growth technique due to the precise nature of thickness control and uniformity of thickness for ultra-thin films. The use of ALD to synthesize deposited IPLs interposed between the Ge channel and an overlying high-k layer has not been studied extensively. For this research, a laboratory-scale ALD reactor was designed and built for Al2O3 and TiO2 chemistries with liquid metal organic precursors and H2O as oxidant. A novel in situ x-ray photoelectron spectroscopy (XPS) setup that uses a differentially pumped electrons lens and analyzer was incorporated successfully into the ALD growth chamber, enabling the real-time monitoring of chemical states in the ALD ambient. This system demonstrated collection of in situ spectra within 10's of seconds of an ALD precursor pulse, without moving the substrate or changing its temperature. Pre-ALD Ge surface functionalization by in situ oxidant dosing ("pre-pulsing") in the growth chamber was studied and optimized to synthesize a high-quality ALD-Al2O3/Ge interface, with a midgap density of interface states (Dit) ~ 2x1011 cm-2 eV-1. In situ XPS studies revealed the influence of hydroxyl ( -OH) termination of the Ge surface in passivating dangling bonds that lead to fast trapping. The evolution of Ge-O bonding states during pre-pulsing was correlated with the observed improvements in hysteresis, frequency dispersion of the gate capacitance, and the response of fast (band-edge) and slow (midgap) interface states. The effects of scaling the physical thickness of the ALD-Al2O3 down to the sub-nanometer regime on key electrical parameters such as Dit, capacitance density, leakage current density and fixed charge were studied. The ultra-thin ALD-Al2O3/Ge interface, unlike in Si, was observed to resist sub-cutaneous oxidation, evidencing the capacitance scaling potential of these IPLs. Photoemission studies done using synchrotron radiation suggested a possible mechanism for FGA-induced passivation of interface states and revealed excellent valence and conduction band offsets of ALD-Al2O3 to Ge (> 2.5eV). Thus, unlike oxide or oxynitride passivation, ALD-Al2O3 IPLs promise an effective leakage barrier to hole and electron injection in addition to providing low Dit. Aggressive gate capacitance scaling requirements for future CMOS technology necessitates the use of the so-called "higher-k" dielectrics such as TiO2 (k> 25) in the gate stack. However, the conduction band offset of the TiO2/Ge interface is very low (~ 0.2eV), resulting in unacceptably high gate leakage. To this end, successful integration of ultrathin (~ 1 nm), interface-engineered ALD-Al2O3 IPLs in ALD-TiO2 gate dielectric stacks on Ge was demonstrated through detailed physical and electrical characterization studies. These IPLs, owing to their large bandgap (~ 6.6eV), were observed to dramatically reduce the gate leakage at the TiO2/Ge interface by 6 orders of magnitude at the flatband voltage. The Platinum-gated bilayer devices exhibited excellent C-V characteristics down to a CET of 1.2nm and exhibited a minimum Dit ~ 3x1011 cm-2 eV-1 near midgap after FGA. Taking into account a typical 0.4nm contribution due to the quantum capacitance of the Ge substrate, these devices are well-suited to achieve the sub-nanometer scaling benchmarks for the 22nm node and beyond. Extensive temperature- and frequency-dependent defect characterization of the bilayer devices evidenced an unpinned oxide/semiconductor interface and showed that thermally-activated electron transport into shallow defect states in the TiO2 (~0.25eV below the CB edge) near the TiO2/Al2O3 interface resulted in a temperature-dependent dispersion of the accumulation capacitance density.