Download or read book Macroeconometrics written by Kevin D. Hoover and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 575 pages. Available in PDF, EPUB and Kindle. Book excerpt: Each chapter of Macroeconometrics is written by respected econometricians in order to provide useful information and perspectives for those who wish to apply econometrics in macroeconomics. The chapters are all written with clear methodological perspectives, making the virtues and limitations of particular econometric approaches accessible to a general readership familiar with applied macroeconomics. The real tensions in macroeconometrics are revealed by the critical comments from different econometricians, having an alternative perspective, which follow each chapter.
Download or read book GARCH Models written by Christian Francq and published by John Wiley & Sons. This book was released on 2019-06-10 with total page 517 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a comprehensive and updated study of GARCH models and their applications in finance, covering new developments in the discipline This book provides a comprehensive and systematic approach to understanding GARCH time series models and their applications whilst presenting the most advanced results concerning the theory and practical aspects of GARCH. The probability structure of standard GARCH models is studied in detail as well as statistical inference such as identification, estimation, and tests. The book also provides new coverage of several extensions such as multivariate models, looks at financial applications, and explores the very validation of the models used. GARCH Models: Structure, Statistical Inference and Financial Applications, 2nd Edition features a new chapter on Parameter-Driven Volatility Models, which covers Stochastic Volatility Models and Markov Switching Volatility Models. A second new chapter titled Alternative Models for the Conditional Variance contains a section on Stochastic Recurrence Equations and additional material on EGARCH, Log-GARCH, GAS, MIDAS, and intraday volatility models, among others. The book is also updated with a more complete discussion of multivariate GARCH; a new section on Cholesky GARCH; a larger emphasis on the inference of multivariate GARCH models; a new set of corrected problems available online; and an up-to-date list of references. Features up-to-date coverage of the current research in the probability, statistics, and econometric theory of GARCH models Covers significant developments in the field, especially in multivariate models Contains completely renewed chapters with new topics and results Handles both theoretical and applied aspects Applies to researchers in different fields (time series, econometrics, finance) Includes numerous illustrations and applications to real financial series Presents a large collection of exercises with corrections Supplemented by a supporting website featuring R codes, Fortran programs, data sets and Problems with corrections GARCH Models, 2nd Edition is an authoritative, state-of-the-art reference that is ideal for graduate students, researchers, and practitioners in business and finance seeking to broaden their skills of understanding of econometric time series models.
Download or read book ARCH Models and Financial Applications written by Christian Gourieroux and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: The classical ARMA models have limitations when applied to the field of financial and monetary economics. Financial time series present nonlinear dynamic characteristics and the ARCH models offer a more adaptive framework for this type of problem. This book surveys the recent work in this area from the perspective of statistical theory, financial models, and applications and will be of interest to theorists and practitioners. From the view point of statistical theory, ARCH models may be considered as specific nonlinear time series models which allow for an exhaustive study of the underlying dynamics. It is possible to reexamine a number of classical questions such as the random walk hypothesis, prediction interval building, presence of latent variables etc., and to test the validity of the previously studied results. There are two main categories of potential applications. One is testing several economic or financial theories concerning the stocks, bonds, and currencies markets, or studying the links between the short and long run. The second is related to the interventions of the banks on the markets, such as choice of optimal portfolios, hedging portfolios, values at risk, and the size and times of block trading.
Download or read book Inside Volatility Filtering written by Alireza Javaheri and published by John Wiley & Sons. This book was released on 2015-08-24 with total page 325 pages. Available in PDF, EPUB and Kindle. Book excerpt: A new, more accurate take on the classical approach to volatility evaluation Inside Volatility Filtering presents a new approach to volatility estimation, using financial econometrics based on a more accurate estimation of the hidden state. Based on the idea of "filtering", this book lays out a two-step framework involving a Chapman-Kolmogorov prior distribution followed by Bayesian posterior distribution to develop a robust estimation based on all available information. This new second edition includes guidance toward basing estimations on historic option prices instead of stocks, as well as Wiener Chaos Expansions and other spectral approaches. The author's statistical trading strategy has been expanded with more in-depth discussion, and the companion website offers new topical insight, additional models, and extra charts that delve into the profitability of applied model calibration. You'll find a more precise approach to the classical time series and financial econometrics evaluation, with expert advice on turning data into profit. Financial markets do not always behave according to a normal bell curve. Skewness creates uncertainty and surprises, and tarnishes trading performance, but it's not going away. This book shows traders how to work with skewness: how to predict it, estimate its impact, and determine whether the data is presenting a warning to stay away or an opportunity for profit. Base volatility estimations on more accurate data Integrate past observation with Bayesian probability Exploit posterior distribution of the hidden state for optimal estimation Boost trade profitability by utilizing "skewness" opportunities Wall Street is constantly searching for volatility assessment methods that will make their models more accurate, but precise handling of skewness is the key to true accuracy. Inside Volatility Filtering shows you a better way to approach non-normal distributions for more accurate volatility estimation.
Download or read book Volatility and Time Series Econometrics written by Mark Watson and published by Oxford University Press. This book was released on 2010-02-11 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: A volume that celebrates and develops the work of Nobel Laureate Robert Engle, it includes original contributions from some of the world's leading econometricians that further Engle's work in time series economics
Download or read book Dynamic Models for Volatility and Heavy Tails written by Andrew C. Harvey and published by Cambridge University Press. This book was released on 2013-04-22 with total page 281 pages. Available in PDF, EPUB and Kindle. Book excerpt: The volatility of financial returns changes over time and, for the last thirty years, Generalized Autoregressive Conditional Heteroscedasticity (GARCH) models have provided the principal means of analyzing, modeling and monitoring such changes. Taking into account that financial returns typically exhibit heavy tails - that is, extreme values can occur from time to time - Andrew Harvey's new book shows how a small but radical change in the way GARCH models are formulated leads to a resolution of many of the theoretical problems inherent in the statistical theory. The approach can also be applied to other aspects of volatility. The more general class of Dynamic Conditional Score models extends to robust modeling of outliers in the levels of time series and to the treatment of time-varying relationships. The statistical theory draws on basic principles of maximum likelihood estimation and, by doing so, leads to an elegant and unified treatment of nonlinear time-series modeling.
Download or read book Handbook of Financial Econometrics written by Yacine Ait-Sahalia and published by Elsevier. This book was released on 2009-10-19 with total page 809 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection of original articles—8 years in the making—shines a bright light on recent advances in financial econometrics. From a survey of mathematical and statistical tools for understanding nonlinear Markov processes to an exploration of the time-series evolution of the risk-return tradeoff for stock market investment, noted scholars Yacine Aït-Sahalia and Lars Peter Hansen benchmark the current state of knowledge while contributors build a framework for its growth. Whether in the presence of statistical uncertainty or the proven advantages and limitations of value at risk models, readers will discover that they can set few constraints on the value of this long-awaited volume. - Presents a broad survey of current research—from local characterizations of the Markov process dynamics to financial market trading activity - Contributors include Nobel Laureate Robert Engle and leading econometricians - Offers a clarity of method and explanation unavailable in other financial econometrics collections
Download or read book Modelling Stock Market Volatility written by Peter H. Rossi and published by Elsevier. This book was released on 1996-11-19 with total page 505 pages. Available in PDF, EPUB and Kindle. Book excerpt: This essay collection focuses on the relationship between continuous time models and Autoregressive Conditionally Heteroskedastic (ARCH) models and applications. For the first time, Modelling Stock Market Volatility provides new insights about the links between these two models and new work on practical estimation methods for continuous time models. Featuring the pioneering scholarship of Daniel Nelson, the text presents research about the discrete time model, continuous time limits and optimal filtering of ARCH models, and the specification and estimation of continuous time processes. This work will lead to a rapid growth in their empirical application as they are increasingly subjected to routine specification testing. - Provides for the first time new insights on the links between continuous time and ARCH models - Collects seminal scholarship by some of the most renowned researchers in finance and econometrics - Captures complex arguments underlying the approximation and proper statistical modelling of continuous time volatility dynamics
Download or read book Time Series Models written by D.R. Cox and published by CRC Press. This book was released on 2020-11-26 with total page 243 pages. Available in PDF, EPUB and Kindle. Book excerpt: The analysis prediction and interpolation of economic and other time series has a long history and many applications. Major new developments are taking place, driven partly by the need to analyze financial data. The five papers in this book describe those new developments from various viewpoints and are intended to be an introduction accessible to readers from a range of backgrounds. The book arises out of the second Seminaire European de Statistique (SEMSTAT) held in Oxford in December 1994. This brought together young statisticians from across Europe, and a series of introductory lectures were given on topics at the forefront of current research activity. The lectures form the basis for the five papers contained in the book. The papers by Shephard and Johansen deal respectively with time series models for volatility, i.e. variance heterogeneity, and with cointegration. Clements and Hendry analyze the nature of prediction errors. A complementary review paper by Laird gives a biometrical view of the analysis of short time series. Finally Astrup and Nielsen give a mathematical introduction to the study of option pricing. Whilst the book draws its primary motivation from financial series and from multivariate econometric modelling, the applications are potentially much broader.
Download or read book Statistical Methods in Finance written by G. S. Maddala and published by . This book was released on 1996-12-11 with total page 760 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive reference work for teaching at graduate level and research in empirical finance. The chapters cover a wide range of statistical and probabilistic methods applied to a variety of financial methods and are written by internationally renowned experts.
Download or read book Forecasting Volatility in the Financial Markets written by Stephen Satchell and published by Elsevier. This book was released on 2011-02-24 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: Forecasting Volatility in the Financial Markets, Third Edition assumes that the reader has a firm grounding in the key principles and methods of understanding volatility measurement and builds on that knowledge to detail cutting-edge modelling and forecasting techniques. It provides a survey of ways to measure risk and define the different models of volatility and return. Editors John Knight and Stephen Satchell have brought together an impressive array of contributors who present research from their area of specialization related to volatility forecasting. Readers with an understanding of volatility measures and risk management strategies will benefit from this collection of up-to-date chapters on the latest techniques in forecasting volatility. Chapters new to this third edition:* What good is a volatility model? Engle and Patton* Applications for portfolio variety Dan diBartolomeo* A comparison of the properties of realized variance for the FTSE 100 and FTSE 250 equity indices Rob Cornish* Volatility modeling and forecasting in finance Xiao and Aydemir* An investigation of the relative performance of GARCH models versus simple rules in forecasting volatility Thomas A. Silvey - Leading thinkers present newest research on volatility forecasting - International authors cover a broad array of subjects related to volatility forecasting - Assumes basic knowledge of volatility, financial mathematics, and modelling
Download or read book Journal of Economics written by Rene Garcia and published by . This book was released on 2000 with total page 820 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Handbook of Multi Commodity Markets and Products written by Andrea Roncoroni and published by John Wiley & Sons. This book was released on 2015-02-17 with total page 1067 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Multi-Commodity Markets and ProductsOver recent decades, the marketplace has seen an increasing integration, not only among different types of commodity markets such as energy, agricultural, and metals, but also with financial markets. This trend raises important questions about how to identify and analyse opportunities in and manage risks of commodity products. The Handbook of Multi-Commodity Markets and Products offers traders, commodity brokers, and other professionals a practical and comprehensive manual that covers market structure and functioning, as well as the practice of trading across a wide range of commodity markets and products. Written in non-technical language, this important resource includes the information needed to begin to master the complexities of and to operate successfully in today’s challenging and fluctuating commodity marketplace. Designed as a practical practitioner-orientated resource, the book includes a detailed overview of key markets – oil, coal, electricity, emissions, weather, industrial metals, freight, agricultural and foreign exchange – and contains a set of tools for analysing, pricing and managing risk for the individual markets. Market features and the main functioning rules of the markets in question are presented, along with the structure of basic financial products and standardised deals. A range of vital topics such as stochastic and econometric modelling, market structure analysis, contract engineering, as well as risk assessment and management are presented and discussed in detail with illustrative examples to commodity markets. The authors showcase how to structure and manage both simple and more complex multi-commodity deals. Addressing the issues of profit-making and risk management, the book reveals how to exploit pay-off profiles and trading strategies on a diversified set of commodity prices. In addition, the book explores how to price energy products and other commodities belonging to markets segmented across specific structural features. The Handbook of Multi-Commodity Markets and Products includes a wealth of proven methods and useful models that can be selected and developed in order to make appropriate estimations of the future evolution of prices and appropriate valuations of products. The authors additionally explore market risk issues and what measures of risk should be adopted for the purpose of accurately assessing exposure from multi-commodity portfolios. This vital resource offers the models, tools, strategies and general information commodity brokers and other professionals need to succeed in today’s highly competitive marketplace.
Download or read book Stochastic Volatility written by Neil Shephard and published by OUP Oxford. This book was released on 2005-03-10 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic volatility is the main concept used in the fields of financial economics and mathematical finance to deal with time-varying volatility in financial markets. This book brings together some of the main papers that have influenced the field of the econometrics of stochastic volatility, and shows that the development of this subject has been highly multidisciplinary, with results drawn from financial economics, probability theory, and econometrics, blending to produce methods and models that have aided our understanding of the realistic pricing of options, efficient asset allocation, and accurate risk assessment. A lengthy introduction by the editor connects the papers with the literature.
Download or read book Forecasting Volatility in the Financial Markets written by John L. Knight and published by Butterworth-Heinemann. This book was released on 2002 with total page 428 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text assumes that the reader has a firm grounding in the key principles and methods of understanding volatility measurement and builds on that knowledge to detail cutting edge modeling and forecasting techniques. It then uses a technical survey to explain the different ways to measure risk and define the different models of volatility and return.
Download or read book Asymptotic Properties of Parametric and Nonparametric Estimators of Continuous and Discrete Time Markov Processes written by Valentina Corradi and published by . This book was released on 1994 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Linear Models and Time Series Analysis written by Marc S. Paolella and published by John Wiley & Sons. This book was released on 2018-10-10 with total page 900 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive and timely edition on an emerging new trend in time series Linear Models and Time-Series Analysis: Regression, ANOVA, ARMA and GARCH sets a strong foundation, in terms of distribution theory, for the linear model (regression and ANOVA), univariate time series analysis (ARMAX and GARCH), and some multivariate models associated primarily with modeling financial asset returns (copula-based structures and the discrete mixed normal and Laplace). It builds on the author's previous book, Fundamental Statistical Inference: A Computational Approach, which introduced the major concepts of statistical inference. Attention is explicitly paid to application and numeric computation, with examples of Matlab code throughout. The code offers a framework for discussion and illustration of numerics, and shows the mapping from theory to computation. The topic of time series analysis is on firm footing, with numerous textbooks and research journals dedicated to it. With respect to the subject/technology, many chapters in Linear Models and Time-Series Analysis cover firmly entrenched topics (regression and ARMA). Several others are dedicated to very modern methods, as used in empirical finance, asset pricing, risk management, and portfolio optimization, in order to address the severe change in performance of many pension funds, and changes in how fund managers work. Covers traditional time series analysis with new guidelines Provides access to cutting edge topics that are at the forefront of financial econometrics and industry Includes latest developments and topics such as financial returns data, notably also in a multivariate context Written by a leading expert in time series analysis Extensively classroom tested Includes a tutorial on SAS Supplemented with a companion website containing numerous Matlab programs Solutions to most exercises are provided in the book Linear Models and Time-Series Analysis: Regression, ANOVA, ARMA and GARCH is suitable for advanced masters students in statistics and quantitative finance, as well as doctoral students in economics and finance. It is also useful for quantitative financial practitioners in large financial institutions and smaller finance outlets.