Download or read book Inference and Asymptotics written by D.R. Cox and published by Routledge. This book was released on 2017-10-19 with total page 376 pages. Available in PDF, EPUB and Kindle. Book excerpt: Our book Asymptotic Techniquesfor Use in Statistics was originally planned as an account of asymptotic statistical theory, but by the time we had completed the mathematical preliminaries it seemed best to publish these separately. The present book, although largely self-contained, takes up the original theme and gives a systematic account of some recent developments in asymptotic parametric inference from a likelihood-based perspective. Chapters 1-4 are relatively elementary and provide first a review of key concepts such as likelihood, sufficiency, conditionality, ancillarity, exponential families and transformation models. Then first-order asymptotic theory is set out, followed by a discussion of the need for higher-order theory. This is then developed in some generality in Chapters 5-8. A final chapter deals briefly with some more specialized issues. The discussion emphasizes concepts and techniques rather than precise mathematical verifications with full attention to regularity conditions and, especially in the less technical chapters, draws quite heavily on illustrative examples. Each chapter ends with outline further results and exercises and with bibliographic notes. Many parts of the field discussed in this book are undergoing rapid further development, and in those parts the book therefore in some respects has more the flavour of a progress report than an exposition of a largely completed theory.
Download or read book Parameter Estimation in Fractional Diffusion Models written by Kęstutis Kubilius and published by Springer. This book was released on 2018-01-04 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to parameter estimation in diffusion models involving fractional Brownian motion and related processes. For many years now, standard Brownian motion has been (and still remains) a popular model of randomness used to investigate processes in the natural sciences, financial markets, and the economy. The substantial limitation in the use of stochastic diffusion models with Brownian motion is due to the fact that the motion has independent increments, and, therefore, the random noise it generates is “white,” i.e., uncorrelated. However, many processes in the natural sciences, computer networks and financial markets have long-term or short-term dependences, i.e., the correlations of random noise in these processes are non-zero, and slowly or rapidly decrease with time. In particular, models of financial markets demonstrate various kinds of memory and usually this memory is modeled by fractional Brownian diffusion. Therefore, the book constructs diffusion models with memory and provides simple and suitable parameter estimation methods in these models, making it a valuable resource for all researchers in this field. The book is addressed to specialists and researchers in the theory and statistics of stochastic processes, practitioners who apply statistical methods of parameter estimation, graduate and post-graduate students who study mathematical modeling and statistics.
Download or read book Parameter Estimation in Stochastic Volatility Models written by Jaya P. N. Bishwal and published by Springer Nature. This book was released on 2022-08-06 with total page 634 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book develops alternative methods to estimate the unknown parameters in stochastic volatility models, offering a new approach to test model accuracy. While there is ample research to document stochastic differential equation models driven by Brownian motion based on discrete observations of the underlying diffusion process, these traditional methods often fail to estimate the unknown parameters in the unobserved volatility processes. This text studies the second order rate of weak convergence to normality to obtain refined inference results like confidence interval, as well as nontraditional continuous time stochastic volatility models driven by fractional Levy processes. By incorporating jumps and long memory into the volatility process, these new methods will help better predict option pricing and stock market crash risk. Some simulation algorithms for numerical experiments are provided.
Download or read book Essays in Honor of Joon Y Park written by Yoosoon Chang and published by Emerald Group Publishing. This book was released on 2023-04-24 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: Volumes 45a and 45b of Advances in Econometrics honor Professor Joon Y. Park, who has made numerous and substantive contributions to the field of econometrics over a career spanning four decades since the 1980s and counting.
Download or read book Asymptotic Statistics written by Reinhard Höpfner and published by Walter de Gruyter GmbH & Co KG. This book was released on 2014-05-26 with total page 327 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is devoted to the general asymptotic theory of statistical experiments. Local asymptotics for statistical models in the sense of local asymptotic (mixed) normality or local asymptotic quadraticity make up the core of the book. Numerous examples deal with classical independent and identically distributed models and with stochastic processes. The book can be read in different ways, according to possibly different mathematical preferences of the reader. One reader may focus on the statistical theory, and thus on the chapters about Gaussian shift models, mixed normal and quadratic models, and on local asymptotics where the limit model is a Gaussian shift or a mixed normal or a quadratic experiment (LAN, LAMN, LAQ). Another reader may prefer an introduction to stochastic process models where given statistical results apply, and thus concentrate on subsections or chapters on likelihood ratio processes and some diffusion type models where LAN, LAMN or LAQ occurs. Finally, readers might put together both aspects. The book is suitable for graduate students starting to work in statistics of stochastic processes, as well as for researchers interested in a precise introduction to this area.
Download or read book Asymptotics Nonparametrics and Time Series written by Subir Ghosh and published by CRC Press. This book was released on 1999-02-18 with total page 864 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Contains over 2500 equations and exhaustively covers not only nonparametrics but also parametric, semiparametric, frequentist, Bayesian, bootstrap, adaptive, univariate, and multivariate statistical methods, as well as practical uses of Markov chain models."
Download or read book Asymptotic Theory of Statistical Inference for Time Series written by Masanobu Taniguchi and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 671 pages. Available in PDF, EPUB and Kindle. Book excerpt: The primary aim of this book is to provide modern statistical techniques and theory for stochastic processes. The stochastic processes mentioned here are not restricted to the usual AR, MA, and ARMA processes. A wide variety of stochastic processes, including non-Gaussian linear processes, long-memory processes, nonlinear processes, non-ergodic processes and diffusion processes are described. The authors discuss estimation and testing theory and many other relevant statistical methods and techniques.
Download or read book Gaussian Random Processes written by I.A. Ibragimov and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 285 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book deals mainly with three problems involving Gaussian stationary processes. The first problem consists of clarifying the conditions for mutual absolute continuity (equivalence) of probability distributions of a "random process segment" and of finding effective formulas for densities of the equiva lent distributions. Our second problem is to describe the classes of spectral measures corresponding in some sense to regular stationary processes (in par ticular, satisfying the well-known "strong mixing condition") as well as to describe the subclasses associated with "mixing rate". The third problem involves estimation of an unknown mean value of a random process, this random process being stationary except for its mean, i. e. , it is the problem of "distinguishing a signal from stationary noise". Furthermore, we give here auxiliary information (on distributions in Hilbert spaces, properties of sam ple functions, theorems on functions of a complex variable, etc. ). Since 1958 many mathematicians have studied the problem of equivalence of various infinite-dimensional Gaussian distributions (detailed and sys tematic presentation of the basic results can be found, for instance, in [23]). In this book we have considered Gaussian stationary processes and arrived, we believe, at rather definite solutions. The second problem mentioned above is closely related with problems involving ergodic theory of Gaussian dynamic systems as well as prediction theory of stationary processes.
Download or read book Parameter Estimation in Stochastic Differential Equations written by Jaya P. N. Bishwal and published by Springer. This book was released on 2007-09-26 with total page 271 pages. Available in PDF, EPUB and Kindle. Book excerpt: Parameter estimation in stochastic differential equations and stochastic partial differential equations is the science, art and technology of modeling complex phenomena. The subject has attracted researchers from several areas of mathematics. This volume presents the estimation of the unknown parameters in the corresponding continuous models based on continuous and discrete observations and examines extensively maximum likelihood, minimum contrast and Bayesian methods.
Download or read book Handbook of Financial Econometrics written by Yacine Ait-Sahalia and published by Elsevier. This book was released on 2009-10-19 with total page 809 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection of original articles—8 years in the making—shines a bright light on recent advances in financial econometrics. From a survey of mathematical and statistical tools for understanding nonlinear Markov processes to an exploration of the time-series evolution of the risk-return tradeoff for stock market investment, noted scholars Yacine Aït-Sahalia and Lars Peter Hansen benchmark the current state of knowledge while contributors build a framework for its growth. Whether in the presence of statistical uncertainty or the proven advantages and limitations of value at risk models, readers will discover that they can set few constraints on the value of this long-awaited volume. - Presents a broad survey of current research—from local characterizations of the Markov process dynamics to financial market trading activity - Contributors include Nobel Laureate Robert Engle and leading econometricians - Offers a clarity of method and explanation unavailable in other financial econometrics collections
Download or read book Asymptotic Optimal Inference for Non ergodic Models written by I. V. Basawa and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 183 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph contains a comprehensive account of the recent work of the authors and other workers on large sample optimal inference for non-ergodic models. The non-ergodic family of models can be viewed as an extension of the usual Fisher-Rao model for asymptotics, referred to here as an ergodic family. The main feature of a non-ergodic model is that the sample Fisher information, appropriately normed, converges to a non-degenerate random variable rather than to a constant. Mixture experiments, growth models such as birth processes, branching processes, etc. , and non-stationary diffusion processes are typical examples of non-ergodic models for which the usual asymptotics and the efficiency criteria of the Fisher-Rao-Wald type are not directly applicable. The new model necessitates a thorough review of both technical and qualitative aspects of the asymptotic theory. The general model studied includes both ergodic and non-ergodic families even though we emphasise applications of the latter type. The plan to write the monograph originally evolved through a series of lectures given by the first author in a graduate seminar course at Cornell University during the fall of 1978, and by the second author at the University of Munich during the fall of 1979. Further work during 1979-1981 on the topic has resolved many of the outstanding conceptual and technical difficulties encountered previously. While there are still some gaps remaining, it appears that the mainstream development in the area has now taken a more definite shape.
Download or read book Statistical Inference for Ergodic Diffusion Processes written by Yury A. Kutoyants and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 493 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first book in inference for stochastic processes from a statistical, rather than a probabilistic, perspective. It provides a systematic exposition of theoretical results from over ten years of mathematical literature and presents, for the first time in book form, many new techniques and approaches.
Download or read book Statistical Methods for Stochastic Differential Equations written by Mathieu Kessler and published by CRC Press. This book was released on 2012-05-17 with total page 509 pages. Available in PDF, EPUB and Kindle. Book excerpt: The seventh volume in the SemStat series, Statistical Methods for Stochastic Differential Equations presents current research trends and recent developments in statistical methods for stochastic differential equations. Written to be accessible to both new students and seasoned researchers, each self-contained chapter starts with introductions to the topic at hand and builds gradually towards discussing recent research. The book covers Wiener-driven equations as well as stochastic differential equations with jumps, including continuous-time ARMA processes and COGARCH processes. It presents a spectrum of estimation methods, including nonparametric estimation as well as parametric estimation based on likelihood methods, estimating functions, and simulation techniques. Two chapters are devoted to high-frequency data. Multivariate models are also considered, including partially observed systems, asynchronous sampling, tests for simultaneous jumps, and multiscale diffusions. Statistical Methods for Stochastic Differential Equations is useful to the theoretical statistician and the probabilist who works in or intends to work in the field, as well as to the applied statistician or financial econometrician who needs the methods to analyze biological or financial time series.
Download or read book Probability Models written by and published by Elsevier. This book was released on 2024-10-24 with total page 828 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probability Models, Volume 51 in the Handbook of Statistics series, highlights new advances in the field, with this new volume presenting interesting chapters on Stein's methods, Probabilities and thermodynamics third law, Random Matrix Theory, General tools for understanding fluctuations of random variables, An approximation scheme to compute the Fisher-Rao distance between multivariate normal distributions, Probability Models Applied to Reliability and Availability Engineering, Backward stochastic differential equation– Stochastic optimization theory and viscous solution of HJB equation, and much more.Additional chapters cover Probability Models in Machine Learning, The recursive stochastic algorithm, randomized urn models and response-adaptive randomization in clinical trials, Random matrix theory: local laws and applications, KOO methods and their high-dimensional consistencies in some multivariate models, Fourteen Lectures on Inference for Stochastic Processes, and A multivariate cumulative damage model and some applications. - Provides the latest information on probability models - Offers outstanding and original reviews on a range of probability models research topics - Serves as an indispensable reference for researchers and students alike
Download or read book Statistical Inferences for Stochasic Processes written by Ishwar V. Basawa and published by Elsevier. This book was released on 2014-06-28 with total page 455 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stats Inference Stochasic Process
Download or read book Asymptotic Statistics in Insurance Risk Theory written by Yasutaka Shimizu and published by Springer Nature. This book was released on 2022-01-21 with total page 119 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book begins with the fundamental large sample theory, estimating ruin probability, and ends by dealing with the latest issues of estimating the Gerber–Shiu function. This book is the first to introduce the recent development of statistical methodologies in risk theory (ruin theory) as well as their mathematical validities. Asymptotic theory of parametric and nonparametric inference for the ruin-related quantities is discussed under the setting of not only classical compound Poisson risk processes (Cramér–Lundberg model) but also more general Lévy insurance risk processes. The recent development of risk theory can deal with many kinds of ruin-related quantities: the probability of ruin as well as Gerber–Shiu’s discounted penalty function, both of which are useful in insurance risk management and in financial credit risk analysis. In those areas, the common stochastic models are used in the context of the structural approach of companies’ default. So far, the probabilistic point of view has been the main concern for academic researchers. However, this book emphasizes the statistical point of view because identifying the risk model is always necessary and is crucial in the final step of practical risk management.
Download or read book Market Microstructure written by Frédéric Abergel and published by John Wiley & Sons. This book was released on 2012-05-14 with total page 257 pages. Available in PDF, EPUB and Kindle. Book excerpt: The latest cutting-edge research on market microstructure Based on the December 2010 conference on market microstructure, organized with the help of the Institut Louis Bachelier, this guide brings together the leading thinkers to discuss this important field of modern finance. It provides readers with vital insight on the origin of the well-known anomalous "stylized facts" in financial prices series, namely heavy tails, volatility, and clustering, and illustrates their impact on the organization of markets, execution costs, price impact, organization liquidity in electronic markets, and other issues raised by high-frequency trading. World-class contributors cover topics including analysis of high-frequency data, statistics of high-frequency data, market impact, and optimal trading. This is a must-have guide for practitioners and academics in quantitative finance.