EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Numerical Analysis or Numerical Method in Symmetry

Download or read book Numerical Analysis or Numerical Method in Symmetry written by Clemente Cesarano and published by MDPI. This book was released on 2020-02-21 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Special Issue focuses mainly on techniques and the relative formalism typical of numerical methods and therefore of numerical analysis, more generally. These fields of study of mathematics represent an important field of investigation both in the field of applied mathematics and even more exquisitely in the pure research of the theory of approximation and the study of polynomial relations as well as in the analysis of the solutions of the differential equations both ordinary and partial derivatives. Therefore, a substantial part of research on the topic of numerical analysis cannot exclude the fundamental role played by approximation theory and some of the tools used to develop this research. In this Special Issue, we want to draw attention to the mathematical methods used in numerical analysis, such as special functions, orthogonal polynomials, and their theoretical tools, such as Lie algebra, to study the concepts and properties of some special and advanced methods, which are useful in the description of solutions of linear and nonlinear differential equations. A further field of investigation is dedicated to the theory and related properties of fractional calculus with its adequate application to numerical methods.

Book Fractional Differential Equations  Inclusions and Inequalities with Applications

Download or read book Fractional Differential Equations Inclusions and Inequalities with Applications written by Sotiris K. Ntouyas and published by MDPI. This book was released on 2020-11-09 with total page 518 pages. Available in PDF, EPUB and Kindle. Book excerpt: During the last decade, there has been an increased interest in fractional differential equations, inclusions, and inequalities, as they play a fundamental role in the modeling of numerous phenomena, in particular, in physics, biomathematics, blood flow phenomena, ecology, environmental issues, viscoelasticity, aerodynamics, electrodynamics of complex medium, electrical circuits, electron-analytical chemistry, control theory, etc. This book presents collective works published in the recent Special Issue (SI) entitled "Fractional Differential Equation, Inclusions and Inequalities with Applications" of the journal Mathematics. This Special Issue presents recent developments in the theory of fractional differential equations and inequalities. Topics include but are not limited to the existence and uniqueness results for boundary value problems for different types of fractional differential equations, a variety of fractional inequalities, impulsive fractional differential equations, and applications in sciences and engineering.

Book Fractional Order Equations and Inclusions

Download or read book Fractional Order Equations and Inclusions written by Michal Fečkan and published by Walter de Gruyter GmbH & Co KG. This book was released on 2017-11-07 with total page 506 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents fractional difference, integral, differential, evolution equations and inclusions, and discusses existence and asymptotic behavior of their solutions. Controllability and relaxed control results are obtained. Combining rigorous deduction with abundant examples, it is of interest to nonlinear science researchers using fractional equations as a tool, and physicists, mechanics researchers and engineers studying relevant topics. Contents Fractional Difference Equations Fractional Integral Equations Fractional Differential Equations Fractional Evolution Equations: Continued Fractional Differential Inclusions

Book Fractional Differential Equations

Download or read book Fractional Differential Equations written by Juan J. Nieto and published by MDPI. This book was released on 2019-11-19 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fractional calculus provides the possibility of introducing integrals and derivatives of an arbitrary order in the mathematical modelling of physical processes, and it has become a relevant subject with applications to various fields, such as anomalous diffusion, propagation in different media, and propogation in relation to materials with different properties. However, many aspects from theoretical and practical points of view have still to be developed in relation to models based on fractional operators. This Special Issue is related to new developments on different aspects of fractional differential equations, both from a theoretical point of view and in terms of applications in different fields such as physics, chemistry, or control theory, for instance. The topics of the Issue include fractional calculus, the mathematical analysis of the properties of the solutions to fractional equations, the extension of classical approaches, or applications of fractional equations to several fields.

Book Asymptotic Integration And Stability  For Ordinary  Functional And Discrete Differential Equations Of Fractional Order

Download or read book Asymptotic Integration And Stability For Ordinary Functional And Discrete Differential Equations Of Fractional Order written by Dumitru Baleanu and published by World Scientific. This book was released on 2015-01-15 with total page 209 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents several important and recent contributions to the emerging field of fractional differential equations in a self-contained manner. It deals with new results on existence, uniqueness and multiplicity, smoothness, asymptotic development, and stability of solutions. The new topics in the field of fractional calculus include also the Mittag-Leffler and Razumikhin stability, stability of a class of discrete fractional non-autonomous systems, asymptotic integration with a priori given coefficients, intervals of disconjugacy (non-oscillation), existence of Lp solutions for various linear, and nonlinear fractional differential equations.

Book Fractional Calculus and Fractional Differential Equations

Download or read book Fractional Calculus and Fractional Differential Equations written by Varsha Daftardar-Gejji and published by Springer. This book was released on 2019-08-10 with total page 187 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a broad overview of the latest developments in fractional calculus and fractional differential equations (FDEs) with an aim to motivate the readers to venture into these areas. It also presents original research describing the fractional operators of variable order, fractional-order delay differential equations, chaos and related phenomena in detail. Selected results on the stability of solutions of nonlinear dynamical systems of the non-commensurate fractional order have also been included. Furthermore, artificial neural network and fractional differential equations are elaborated on; and new transform methods (for example, Sumudu methods) and how they can be employed to solve fractional partial differential equations are discussed. The book covers the latest research on a variety of topics, including: comparison of various numerical methods for solving FDEs, the Adomian decomposition method and its applications to fractional versions of the classical Poisson processes, variable-order fractional operators, fractional variational principles, fractional delay differential equations, fractional-order dynamical systems and stability analysis, inequalities and comparison theorems in FDEs, artificial neural network approximation for fractional operators, and new transform methods for solving partial FDEs. Given its scope and level of detail, the book will be an invaluable asset for researchers working in these areas.

Book Semigroups for Delay Equations

Download or read book Semigroups for Delay Equations written by Andras Batkai and published by CRC Press. This book was released on 2005-09-05 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: In most physical, chemical, biological and economic phenomena it is quite natural to assume that the system not only depends on the present state but also on past occurrences. These circumstances are mathematically described by partial differential equations with delay. This book presents, in a systematic fashion, how delay equations can be studied

Book Lyapunov Functionals and Stability of Stochastic Functional Differential Equations

Download or read book Lyapunov Functionals and Stability of Stochastic Functional Differential Equations written by Leonid Shaikhet and published by Springer Science & Business Media. This book was released on 2013-03-29 with total page 352 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stability conditions for functional differential equations can be obtained using Lyapunov functionals. Lyapunov Functionals and Stability of Stochastic Functional Differential Equations describes the general method of construction of Lyapunov functionals to investigate the stability of differential equations with delays. This work continues and complements the author’s previous book Lyapunov Functionals and Stability of Stochastic Difference Equations, where this method is described for difference equations with discrete and continuous time. The text begins with both a description and a delineation of the peculiarities of deterministic and stochastic functional differential equations. There follows basic definitions for stability theory of stochastic hereditary systems, and the formal procedure of Lyapunov functionals construction is presented. Stability investigation is conducted for stochastic linear and nonlinear differential equations with constant and distributed delays. The proposed method is used for stability investigation of different mathematical models such as: • inverted controlled pendulum; • Nicholson's blowflies equation; • predator-prey relationships; • epidemic development; and • mathematical models that describe human behaviours related to addictions and obesity. Lyapunov Functionals and Stability of Stochastic Functional Differential Equations is primarily addressed to experts in stability theory but will also be of interest to professionals and students in pure and computational mathematics, physics, engineering, medicine, and biology.

Book Impulsive Differential Equations

Download or read book Impulsive Differential Equations written by Dimit?r Ba?nov and published by World Scientific. This book was released on 1995 with total page 246 pages. Available in PDF, EPUB and Kindle. Book excerpt: The question of the presence of various asymptotic properties of the solutions of ordinary differential equations arises when solving various practical problems. The investigation of these questions is still more important for impulsive differential equations which have a wider field of application than the ordinary ones.The results obtained by treating the asymptotic properties of the solutions of impulsive differential equations can be found in numerous separate articles. The systematized exposition of these results in a separate book will satisfy the growing interest in the problems related to the asymptotic properties of the solutions of impulsive differential equations and their applications.

Book The Analysis of Fractional Differential Equations

Download or read book The Analysis of Fractional Differential Equations written by Kai Diethelm and published by Springer. This book was released on 2010-08-18 with total page 251 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fractional calculus was first developed by pure mathematicians in the middle of the 19th century. Some 100 years later, engineers and physicists have found applications for these concepts in their areas. However there has traditionally been little interaction between these two communities. In particular, typical mathematical works provide extensive findings on aspects with comparatively little significance in applications, and the engineering literature often lacks mathematical detail and precision. This book bridges the gap between the two communities. It concentrates on the class of fractional derivatives most important in applications, the Caputo operators, and provides a self-contained, thorough and mathematically rigorous study of their properties and of the corresponding differential equations. The text is a useful tool for mathematicians and researchers from the applied sciences alike. It can also be used as a basis for teaching graduate courses on fractional differential equations.

Book Introduction to Functional Differential Equations

Download or read book Introduction to Functional Differential Equations written by Jack K. Hale and published by Springer Science & Business Media. This book was released on 2013-11-21 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present book builds upon an earlier work of J. Hale, "Theory of Func tional Differential Equations" published in 1977. We have tried to maintain the spirit of that book and have retained approximately one-third of the material intact. One major change was a complete new presentation of lin ear systems (Chapters 6~9) for retarded and neutral functional differential equations. The theory of dissipative systems (Chapter 4) and global at tractors was completely revamped as well as the invariant manifold theory (Chapter 10) near equilibrium points and periodic orbits. A more complete theory of neutral equations is presented (see Chapters 1, 2, 3, 9, and 10). Chapter 12 is completely new and contains a guide to active topics of re search. In the sections on supplementary remarks, we have included many references to recent literature, but, of course, not nearly all, because the subject is so extensive. Jack K. Hale Sjoerd M. Verduyn Lunel Contents Preface............................................................ v Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . . . 1. Linear differential difference equations . . . . . . . . . . . . . . 11 . . . . . . 1.1 Differential and difference equations. . . . . . . . . . . . . . . . . . . . 11 . . . . . . . . 1.2 Retarded differential difference equations. . . . . . . . . . . . . . . . 13 . . . . . . . 1.3 Exponential estimates of x( ¢,f) . . . . . . . . . . . . . . . . . . . . . 15 . . . . . . . . . . 1.4 The characteristic equation . . . . . . . . . . . . . . . . . . . . . . . . 17 . . . . . . . . . . . . 1.5 The fundamental solution. . . . . . . . . . . . . . . . . . . . . . . . . . 18 . . . . . . . . . . . . 1.6 The variation-of-constants formula............................. 23 1. 7 Neutral differential difference equations . . . . . . . . . . . . . . . . . 25 . . . . . . . 1.8 Supplementary remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 34 . . . . . . . . . . . . . 2. Functional differential equations: Basic theory . . . . . . . . 38 . . 2.1 Definition of a retarded equation. . . . . . . . . . . . . . . . . . . . . . 38 . . . . . . . . . 2.2 Existence, uniqueness, and continuous dependence . . . . . . . . . . 39 . . . 2.3 Continuation of solutions . . . . . . . . . . . . . . . . . . . . . . . . . . 44 . . . . . . . . . . . .

Book New developments in Functional and Fractional Differential Equations and in Lie Symmetry

Download or read book New developments in Functional and Fractional Differential Equations and in Lie Symmetry written by Ioannis P. Stavroulakis and published by MDPI. This book was released on 2021-09-03 with total page 156 pages. Available in PDF, EPUB and Kindle. Book excerpt: Delay, difference, functional, fractional, and partial differential equations have many applications in science and engineering. In this Special Issue, 29 experts co-authored 10 papers dealing with these subjects. A summary of the main points of these papers follows: Several oscillation conditions for a first-order linear differential equation with non-monotone delay are established in Oscillation Criteria for First Order Differential Equations with Non-Monotone Delays, whereas a sharp oscillation criterion using the notion of slowly varying functions is established in A Sharp Oscillation Criterion for a Linear Differential Equation with Variable Delay. The approximation of a linear autonomous differential equation with a small delay is considered in Approximation of a Linear Autonomous Differential Equation with Small Delay; the model of infection diseases by Marchuk is studied in Around the Model of Infection Disease: The Cauchy Matrix and Its Properties. Exact solutions to fractional-order Fokker–Planck equations are presented in New Exact Solutions and Conservation Laws to the Fractional-Order Fokker–Planck Equations, and a spectral collocation approach to solving a class of time-fractional stochastic heat equations driven by Brownian motion is constructed in A Collocation Approach for Solving Time-Fractional Stochastic Heat Equation Driven by an Additive Noise. A finite difference approximation method for a space fractional convection-diffusion model with variable coefficients is proposed in Finite Difference Approximation Method for a Space Fractional Convection–Diffusion Equation with Variable Coefficients; existence results for a nonlinear fractional difference equation with delay and impulses are established in On Nonlinear Fractional Difference Equation with Delay and Impulses. A complete Noether symmetry analysis of a generalized coupled Lane–Emden–Klein–Gordon–Fock system with central symmetry is provided in Oscillation Criteria for First Order Differential Equations with Non-Monotone Delays, and new soliton solutions of a fractional Jaulent soliton Miodek system via symmetry analysis are presented in New Soliton Solutions of Fractional Jaulent-Miodek System with Symmetry Analysis.

Book Attractors  Shadowing  And Approximation Of Abstract Semilinear Differential Equations

Download or read book Attractors Shadowing And Approximation Of Abstract Semilinear Differential Equations written by Sergey I Piskarev and published by World Scientific. This book was released on 2023-07-05 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is devoted to some branches of the theory of approximation of abstract differential equations, namely, approximation of attractors in the case of hyperbolic equilibrium points, shadowing, and approximation of time-fractional semilinear problems.In this book, the most famous methods of several urgent branches of the theory of abstract differential equations scattered in numerous journal publications are systematized and collected together, which makes it convenient for the initial study of the subject and also for its use as a reference book. The presentation of the material is closed and accompanied by examples; this makes it easier to understand the material and helps beginners to quickly enter into the circle of ideas discussed.The book can be useful for specialists in partial differential equations, functional analysis, theory of approximation of differential equations, and for all researchers, students, and postgraduates who apply these branches of mathematics in their work.

Book Statistical Inference for Fractional Diffusion Processes

Download or read book Statistical Inference for Fractional Diffusion Processes written by B. L. S. Prakasa Rao and published by John Wiley & Sons. This book was released on 2011-07-05 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: Stochastic processes are widely used for model building in the social, physical, engineering and life sciences as well as in financial economics. In model building, statistical inference for stochastic processes is of great importance from both a theoretical and an applications point of view. This book deals with Fractional Diffusion Processes and statistical inference for such stochastic processes. The main focus of the book is to consider parametric and nonparametric inference problems for fractional diffusion processes when a complete path of the process over a finite interval is observable. Key features: Introduces self-similar processes, fractional Brownian motion and stochastic integration with respect to fractional Brownian motion. Provides a comprehensive review of statistical inference for processes driven by fractional Brownian motion for modelling long range dependence. Presents a study of parametric and nonparametric inference problems for the fractional diffusion process. Discusses the fractional Brownian sheet and infinite dimensional fractional Brownian motion. Includes recent results and developments in the area of statistical inference of fractional diffusion processes. Researchers and students working on the statistics of fractional diffusion processes and applied mathematicians and statisticians involved in stochastic process modelling will benefit from this book.

Book Lyapunov Functionals and Stability of Stochastic Difference Equations

Download or read book Lyapunov Functionals and Stability of Stochastic Difference Equations written by Leonid Shaikhet and published by Springer Science & Business Media. This book was released on 2011-06-02 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: Hereditary systems (or systems with either delay or after-effects) are widely used to model processes in physics, mechanics, control, economics and biology. An important element in their study is their stability. Stability conditions for difference equations with delay can be obtained using a Lyapunov functional. Lyapunov Functionals and Stability of Stochastic Difference Equations describes a general method of Lyapunov functional construction to investigate the stability of discrete- and continuous-time stochastic Volterra difference equations. The method allows the investigation of the degree to which the stability properties of differential equations are preserved in their difference analogues. The text is self-contained, beginning with basic definitions and the mathematical fundamentals of Lyapunov functional construction and moving on from particular to general stability results for stochastic difference equations with constant coefficients. Results are then discussed for stochastic difference equations of linear, nonlinear, delayed, discrete and continuous types. Examples are drawn from a variety of physical systems including inverted pendulum control, study of epidemic development, Nicholson’s blowflies equation and predator–prey relationships. Lyapunov Functionals and Stability of Stochastic Difference Equations is primarily addressed to experts in stability theory but will also be of use in the work of pure and computational mathematicians and researchers using the ideas of optimal control to study economic, mechanical and biological systems.

Book Number Theory II

Download or read book Number Theory II written by A. N. Parshin and published by Springer. This book was released on 1992 with total page 292 pages. Available in PDF, EPUB and Kindle. Book excerpt: Volume 62 of the Encyclopedia presents the main structures and results of algebraic number theory with emphasis on algebraic number fields and class field theory. Written for the nonspecialist, the author assumes a general understanding of modern algebra and elementary number theory. Only the general properties of algebraic number fields and relate.