EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Applied Linear Statistical Models

Download or read book Applied Linear Statistical Models written by Michael H. Kutner and published by McGraw-Hill/Irwin. This book was released on 2005 with total page 1396 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear regression with one predictor variable; Inferences in regression and correlation analysis; Diagnosticis and remedial measures; Simultaneous inferences and other topics in regression analysis; Matrix approach to simple linear regression analysis; Multiple linear regression; Nonlinear regression; Design and analysis of single-factor studies; Multi-factor studies; Specialized study designs.

Book Linear Statistical Models

Download or read book Linear Statistical Models written by James H. Stapleton and published by John Wiley & Sons. This book was released on 2009-08-03 with total page 517 pages. Available in PDF, EPUB and Kindle. Book excerpt: Praise for the First Edition "This impressive and eminently readable text . . . [is] a welcome addition to the statistical literature." —The Indian Journal of Statistics Revised to reflect the current developments on the topic, Linear Statistical Models, Second Edition provides an up-to-date approach to various statistical model concepts. The book includes clear discussions that illustrate key concepts in an accessible and interesting format while incorporating the most modern software applications. This Second Edition follows an introduction-theorem-proof-examples format that allows for easier comprehension of how to use the methods and recognize the associated assumptions and limits. In addition to discussions on the methods of random vectors, multiple regression techniques, simultaneous confidence intervals, and analysis of frequency data, new topics such as mixed models and curve fitting of models have been added to thoroughly update and modernize the book. Additional topical coverage includes: An introduction to R and S-Plus® with many examples Multiple comparison procedures Estimation of quantiles for regression models An emphasis on vector spaces and the corresponding geometry Extensive graphical displays accompany the book's updated descriptions and examples, which can be simulated using R, S-Plus®, and SAS® code. Problems at the end of each chapter allow readers to test their understanding of the presented concepts, and additional data sets are available via the book's FTP site. Linear Statistical Models, Second Edition is an excellent book for courses on linear models at the upper-undergraduate and graduate levels. It also serves as a comprehensive reference for statisticians, engineers, and scientists who apply multiple regression or analysis of variance in their everyday work.

Book Foundations of Linear and Generalized Linear Models

Download or read book Foundations of Linear and Generalized Linear Models written by Alan Agresti and published by John Wiley & Sons. This book was released on 2015-02-23 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: A valuable overview of the most important ideas and results in statistical modeling Written by a highly-experienced author, Foundations of Linear and Generalized Linear Models is a clear and comprehensive guide to the key concepts and results of linearstatistical models. The book presents a broad, in-depth overview of the most commonly usedstatistical models by discussing the theory underlying the models, R software applications,and examples with crafted models to elucidate key ideas and promote practical modelbuilding. The book begins by illustrating the fundamentals of linear models, such as how the model-fitting projects the data onto a model vector subspace and how orthogonal decompositions of the data yield information about the effects of explanatory variables. Subsequently, the book covers the most popular generalized linear models, which include binomial and multinomial logistic regression for categorical data, and Poisson and negative binomial loglinear models for count data. Focusing on the theoretical underpinnings of these models, Foundations ofLinear and Generalized Linear Models also features: An introduction to quasi-likelihood methods that require weaker distributional assumptions, such as generalized estimating equation methods An overview of linear mixed models and generalized linear mixed models with random effects for clustered correlated data, Bayesian modeling, and extensions to handle problematic cases such as high dimensional problems Numerous examples that use R software for all text data analyses More than 400 exercises for readers to practice and extend the theory, methods, and data analysis A supplementary website with datasets for the examples and exercises An invaluable textbook for upper-undergraduate and graduate-level students in statistics and biostatistics courses, Foundations of Linear and Generalized Linear Models is also an excellent reference for practicing statisticians and biostatisticians, as well as anyone who is interested in learning about the most important statistical models for analyzing data.

Book The Total Least Squares Problem

Download or read book The Total Least Squares Problem written by Sabine Van Huffel and published by SIAM. This book was released on 1991-01-01 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book devoted entirely to total least squares. The authors give a unified presentation of the TLS problem. A description of its basic principles are given, the various algebraic, statistical and sensitivity properties of the problem are discussed, and generalizations are presented. Applications are surveyed to facilitate uses in an even wider range of applications. Whenever possible, comparison is made with the well-known least squares methods. A basic knowledge of numerical linear algebra, matrix computations, and some notion of elementary statistics is required of the reader; however, some background material is included to make the book reasonably self-contained.

Book Statistical Regression and Classification

Download or read book Statistical Regression and Classification written by Norman Matloff and published by CRC Press. This book was released on 2017-09-19 with total page 439 pages. Available in PDF, EPUB and Kindle. Book excerpt: Statistical Regression and Classification: From Linear Models to Machine Learning takes an innovative look at the traditional statistical regression course, presenting a contemporary treatment in line with today's applications and users. The text takes a modern look at regression: * A thorough treatment of classical linear and generalized linear models, supplemented with introductory material on machine learning methods. * Since classification is the focus of many contemporary applications, the book covers this topic in detail, especially the multiclass case. * In view of the voluminous nature of many modern datasets, there is a chapter on Big Data. * Has special Mathematical and Computational Complements sections at ends of chapters, and exercises are partitioned into Data, Math and Complements problems. * Instructors can tailor coverage for specific audiences such as majors in Statistics, Computer Science, or Economics. * More than 75 examples using real data. The book treats classical regression methods in an innovative, contemporary manner. Though some statistical learning methods are introduced, the primary methodology used is linear and generalized linear parametric models, covering both the Description and Prediction goals of regression methods. The author is just as interested in Description applications of regression, such as measuring the gender wage gap in Silicon Valley, as in forecasting tomorrow's demand for bike rentals. An entire chapter is devoted to measuring such effects, including discussion of Simpson's Paradox, multiple inference, and causation issues. Similarly, there is an entire chapter of parametric model fit, making use of both residual analysis and assessment via nonparametric analysis. Norman Matloff is a professor of computer science at the University of California, Davis, and was a founder of the Statistics Department at that institution. His current research focus is on recommender systems, and applications of regression methods to small area estimation and bias reduction in observational studies. He is on the editorial boards of the Journal of Statistical Computation and the R Journal. An award-winning teacher, he is the author of The Art of R Programming and Parallel Computation in Data Science: With Examples in R, C++ and CUDA.

Book All of Statistics

    Book Details:
  • Author : Larry Wasserman
  • Publisher : Springer Science & Business Media
  • Release : 2013-12-11
  • ISBN : 0387217363
  • Pages : 446 pages

Download or read book All of Statistics written by Larry Wasserman and published by Springer Science & Business Media. This book was released on 2013-12-11 with total page 446 pages. Available in PDF, EPUB and Kindle. Book excerpt: Taken literally, the title "All of Statistics" is an exaggeration. But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like non-parametric curve estimation, bootstrapping, and classification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analysing data.

Book Econometric Analysis of Cross Section and Panel Data  second edition

Download or read book Econometric Analysis of Cross Section and Panel Data second edition written by Jeffrey M. Wooldridge and published by MIT Press. This book was released on 2010-10-01 with total page 1095 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second edition of a comprehensive state-of-the-art graduate level text on microeconometric methods, substantially revised and updated. The second edition of this acclaimed graduate text provides a unified treatment of two methods used in contemporary econometric research, cross section and data panel methods. By focusing on assumptions that can be given behavioral content, the book maintains an appropriate level of rigor while emphasizing intuitive thinking. The analysis covers both linear and nonlinear models, including models with dynamics and/or individual heterogeneity. In addition to general estimation frameworks (particular methods of moments and maximum likelihood), specific linear and nonlinear methods are covered in detail, including probit and logit models and their multivariate, Tobit models, models for count data, censored and missing data schemes, causal (or treatment) effects, and duration analysis. Econometric Analysis of Cross Section and Panel Data was the first graduate econometrics text to focus on microeconomic data structures, allowing assumptions to be separated into population and sampling assumptions. This second edition has been substantially updated and revised. Improvements include a broader class of models for missing data problems; more detailed treatment of cluster problems, an important topic for empirical researchers; expanded discussion of "generalized instrumental variables" (GIV) estimation; new coverage (based on the author's own recent research) of inverse probability weighting; a more complete framework for estimating treatment effects with panel data, and a firmly established link between econometric approaches to nonlinear panel data and the "generalized estimating equation" literature popular in statistics and other fields. New attention is given to explaining when particular econometric methods can be applied; the goal is not only to tell readers what does work, but why certain "obvious" procedures do not. The numerous included exercises, both theoretical and computer-based, allow the reader to extend methods covered in the text and discover new insights.

Book Generalized Linear Models With Examples in R

Download or read book Generalized Linear Models With Examples in R written by Peter K. Dunn and published by Springer. This book was released on 2018-11-10 with total page 573 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook presents an introduction to generalized linear models, complete with real-world data sets and practice problems, making it applicable for both beginning and advanced students of applied statistics. Generalized linear models (GLMs) are powerful tools in applied statistics that extend the ideas of multiple linear regression and analysis of variance to include response variables that are not normally distributed. As such, GLMs can model a wide variety of data types including counts, proportions, and binary outcomes or positive quantities. The book is designed with the student in mind, making it suitable for self-study or a structured course. Beginning with an introduction to linear regression, the book also devotes time to advanced topics not typically included in introductory textbooks. It features chapter introductions and summaries, clear examples, and many practice problems, all carefully designed to balance theory and practice. The text also provides a working knowledge of applied statistical practice through the extensive use of R, which is integrated into the text. Other features include: • Advanced topics such as power variance functions, saddlepoint approximations, likelihood score tests, modified profile likelihood, small-dispersion asymptotics, and randomized quantile residuals • Nearly 100 data sets in the companion R package GLMsData • Examples that are cross-referenced to the companion data set, allowing readers to load the data and follow the analysis in their own R session

Book Generalized Linear Models

Download or read book Generalized Linear Models written by P. McCullagh and published by Routledge. This book was released on 2019-01-22 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: The success of the first edition of Generalized Linear Models led to the updated Second Edition, which continues to provide a definitive unified, treatment of methods for the analysis of diverse types of data. Today, it remains popular for its clarity, richness of content and direct relevance to agricultural, biological, health, engineering, and ot

Book Dynamic Linear Models with R

Download or read book Dynamic Linear Models with R written by Giovanni Petris and published by Springer Science & Business Media. This book was released on 2009-06-12 with total page 258 pages. Available in PDF, EPUB and Kindle. Book excerpt: State space models have gained tremendous popularity in recent years in as disparate fields as engineering, economics, genetics and ecology. After a detailed introduction to general state space models, this book focuses on dynamic linear models, emphasizing their Bayesian analysis. Whenever possible it is shown how to compute estimates and forecasts in closed form; for more complex models, simulation techniques are used. A final chapter covers modern sequential Monte Carlo algorithms. The book illustrates all the fundamental steps needed to use dynamic linear models in practice, using R. Many detailed examples based on real data sets are provided to show how to set up a specific model, estimate its parameters, and use it for forecasting. All the code used in the book is available online. No prior knowledge of Bayesian statistics or time series analysis is required, although familiarity with basic statistics and R is assumed.

Book Journal of the American Statistical Association

Download or read book Journal of the American Statistical Association written by and published by . This book was released on 2008 with total page 920 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Asymptotic Theory of Nonlinear Regression

Download or read book Asymptotic Theory of Nonlinear Regression written by A. V. Ivanov and published by Springer. This book was released on 1997 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents up-to-date mathematical results in asymptotic theory on nonlinear regression on the basis of various asymptotic expansions of least squares, its characteristics, and its distribution functions of functionals of Least Squares Estimator. It is divided into four chapters. In Chapter 1 assertions on the probability of large deviation of normal Least Squares Estimator of regression function parameters are made. Chapter 2 indicates conditions for Least Moduli Estimator asymptotic normality. An asymptotic expansion of Least Squares Estimator as well as its distribution function are obtained and two initial terms of these asymptotic expansions are calculated. Separately, the Berry-Esseen inequality for Least Squares Estimator distribution is deduced. In the third chapter asymptotic expansions related to functionals of Least Squares Estimator are dealt with. Lastly, Chapter 4 offers a comparison of the powers of statistical tests based on Least Squares Estimators. The Appendix gives an overview of subsidiary facts and a list of principal notations. Additional background information, grouped per chapter, is presented in the Commentary section. The volume concludes with an extensive Bibliography. Audience: This book will be of interest to mathematicians and statisticians whose work involves stochastic analysis, probability theory, mathematics of engineering, mathematical modelling, systems theory or cybernetics.

Book Applied Regression Analysis and Generalized Linear Models

Download or read book Applied Regression Analysis and Generalized Linear Models written by John Fox and published by SAGE Publications. This book was released on 2015-03-18 with total page 612 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combining a modern, data-analytic perspective with a focus on applications in the social sciences, the Third Edition of Applied Regression Analysis and Generalized Linear Models provides in-depth coverage of regression analysis, generalized linear models, and closely related methods, such as bootstrapping and missing data. Updated throughout, this Third Edition includes new chapters on mixed-effects models for hierarchical and longitudinal data. Although the text is largely accessible to readers with a modest background in statistics and mathematics, author John Fox also presents more advanced material in optional sections and chapters throughout the book. Accompanying website resources containing all answers to the end-of-chapter exercises. Answers to odd-numbered questions, as well as datasets and other student resources are available on the author′s website. NEW! Bonus chapter on Bayesian Estimation of Regression Models also available at the author′s website.

Book Longitudinal and Panel Data

Download or read book Longitudinal and Panel Data written by Edward W. Frees and published by Cambridge University Press. This book was released on 2004-08-16 with total page 492 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to foundations and applications for quantitatively oriented graduate social-science students and individual researchers.

Book Time Series Analysis

Download or read book Time Series Analysis written by James D. Hamilton and published by Princeton University Press. This book was released on 2020-09-01 with total page 820 pages. Available in PDF, EPUB and Kindle. Book excerpt: An authoritative, self-contained overview of time series analysis for students and researchers The past decade has brought dramatic changes in the way that researchers analyze economic and financial time series. This textbook synthesizes these advances and makes them accessible to first-year graduate students. James Hamilton provides comprehensive treatments of important innovations such as vector autoregressions, generalized method of moments, the economic and statistical consequences of unit roots, time-varying variances, and nonlinear time series models. In addition, he presents basic tools for analyzing dynamic systems—including linear representations, autocovariance generating functions, spectral analysis, and the Kalman filter—in a way that integrates economic theory with the practical difficulties of analyzing and interpreting real-world data. Time Series Analysis fills an important need for a textbook that integrates economic theory, econometrics, and new results. This invaluable book starts from first principles and should be readily accessible to any beginning graduate student, while it is also intended to serve as a reference book for researchers.

Book Introduction to Econometrics

Download or read book Introduction to Econometrics written by James H. Stock and published by Prentice Hall. This book was released on 2015 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: For courses in Introductory Econometrics Engaging applications bring the theory and practice of modern econometrics to life. Ensure students grasp the relevance of econometrics with Introduction to Econometrics-the text that connects modern theory and practice with motivating, engaging applications. The Third Edition Update maintains a focus on currency, while building on the philosophy that applications should drive the theory, not the other way around. This program provides a better teaching and learning experience-for you and your students. Here's how: Personalized learning with MyEconLab-recommendations to help students better prepare for class, quizzes, and exams-and ultimately achieve improved comprehension in the course. Keeping it current with new and updated discussions on topics of particular interest to today's students. Presenting consistency through theory that matches application. Offering a full array of pedagogical features. Note: You are purchasing a standalone product; MyEconLab does not come packaged with this content. If you would like to purchase both the physical text and MyEconLab search for ISBN-10: 0133595420 ISBN-13: 9780133595420. That package includes ISBN-10: 0133486877 /ISBN-13: 9780133486872 and ISBN-10: 0133487679/ ISBN-13: 9780133487671. MyEconLab is not a self-paced technology and should only be purchased when required by an instructor.

Book Linear Models

    Book Details:
  • Author : C.Radhakrishna Rao
  • Publisher : Springer Science & Business Media
  • Release : 2013-06-29
  • ISBN : 1489900241
  • Pages : 360 pages

Download or read book Linear Models written by C.Radhakrishna Rao and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is based on both authors' several years of experience in teaching linear models at various levels. It gives an up-to-date account of the theory and applications of linear models. The book can be used as a text for courses in statistics at the graduate level and as an accompanying text for courses in other areas. Some of the highlights in this book are as follows. A relatively extensive chapter on matrix theory (Appendix A) provides the necessary tools for proving theorems discussed in the text and offers a selection of classical and modern algebraic results that are useful in research work in econometrics, engineering, and optimization theory. The matrix theory of the last ten years has produced a series of fundamental results about the definiteness of matrices, especially for the differences of matrices, which enable superiority comparisons of two biased estimates to be made for the first time. We have attempted to provide a unified theory of inference from linear models with minimal assumptions. Besides the usual least-squares theory, alternative methods of estimation and testing based on convex loss func tions and general estimating equations are discussed. Special emphasis is given to sensitivity analysis and model selection. A special chapter is devoted to the analysis of categorical data based on logit, loglinear, and logistic regression models. The material covered, theoretical discussion, and its practical applica tions will be useful not only to students but also to researchers and con sultants in statistics.