EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Asymptotic Cones and Functions in Optimization and Variational Inequalities

Download or read book Asymptotic Cones and Functions in Optimization and Variational Inequalities written by Alfred Auslender and published by Springer Science & Business Media. This book was released on 2006-05-07 with total page 259 pages. Available in PDF, EPUB and Kindle. Book excerpt: This systematic and comprehensive account of asymptotic sets and functions develops a broad and useful theory in the areas of optimization and variational inequalities. The central focus is on problems of handling unbounded situations, using solutions of a given problem in these classes, when for example standard compacity hypothesis is not present. This book will interest advanced graduate students, researchers, and practitioners of optimization theory, nonlinear programming, and applied mathematics.

Book Asymptotic Cones and Functions in Optimization and Variational Inequalities

Download or read book Asymptotic Cones and Functions in Optimization and Variational Inequalities written by Alfred Auslender and published by Springer Science & Business Media. This book was released on 2002-10-01 with total page 266 pages. Available in PDF, EPUB and Kindle. Book excerpt: This systematic and comprehensive account of asymptotic sets and functions develops a broad and useful theory in the areas of optimization and variational inequalities. The central focus is on problems of handling unbounded situations, using solutions of a given problem in these classes, when for example standard compacity hypothesis is not present. This book will interest advanced graduate students, researchers, and practitioners of optimization theory, nonlinear programming, and applied mathematics.

Book Finite Dimensional Variational Inequalities and Complementarity Problems

Download or read book Finite Dimensional Variational Inequalities and Complementarity Problems written by Francisco Facchinei and published by Springer Science & Business Media. This book was released on 2007-06-04 with total page 698 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is part two of a two-volume work presenting a comprehensive treatment of the finite-dimensional variational inequality and complementarity problem. It details algorithms for solving finite dimensional variational inequalities and complementarity problems. Coverage includes abundant exercises as well as an extensive bibliography. The book will be an enduring reference on the subject and provide the foundation for its sustained growth.

Book Fixed Point Theory  Variational Analysis  and Optimization

Download or read book Fixed Point Theory Variational Analysis and Optimization written by Saleh Abdullah R. Al-Mezel and published by CRC Press. This book was released on 2014-06-03 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fixed Point Theory, Variational Analysis, and Optimization not only covers three vital branches of nonlinear analysis-fixed point theory, variational inequalities, and vector optimization-but also explains the connections between them, enabling the study of a general form of variational inequality problems related to the optimality conditions invol

Book Quadratic Programming and Affine Variational Inequalities

Download or read book Quadratic Programming and Affine Variational Inequalities written by Gue Myung Lee and published by Springer Science & Business Media. This book was released on 2006-03-30 with total page 353 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quadratic programs and affine variational inequalities represent two fundamental, closely-related classes of problems in the t,heories of mathematical programming and variational inequalities, resp- tively. This book develops a unified theory on qualitative aspects of nonconvex quadratic programming and affine variational inequ- ities. The first seven chapters introduce the reader step-by-step to the central issues concerning a quadratic program or an affine variational inequality, such as the solution existence, necessary and sufficient conditions for a point to belong to the solution set, and properties of the solution set. The subsequent two chapters discuss briefly two concrete nlodels (linear fractional vector optimization and the traffic equilibrium problem) whose analysis can benefit a lot from using the results on quadratic programs and affine variational inequalities. There are six chapters devoted to the study of conti- ity and/or differentiability properties of the characteristic maps and functions in quadratic programs and in affine variational inequa- ties where all the components of the problem data are subject to perturbation. Quadratic programs and affine variational inequa- ties under linear perturbations are studied in three other chapters. One special feature of the presentation is that when a certain pr- erty of a characteristic map or function is investigated, we always try first to establish necessary conditions for it to hold, then we go on to study whether the obtained necessary conditions are suf- cient ones. This helps to clarify the structures of the two classes of problems under consideration.

Book Variational Analysis and Applications

Download or read book Variational Analysis and Applications written by Franco Giannessi and published by Springer Science & Business Media. This book was released on 2007-03-06 with total page 1163 pages. Available in PDF, EPUB and Kindle. Book excerpt: This Volume contains the (refereed) papers presented at the 38th Conference of the School of Mathematics "G.Stampacchia" of the "E.Majorana" Centre for Scientific Culture of Erice (Sicily), held in Memory ofG. Stampacchia and J.-L. Lions in the period June 20 - July 2003. The presence of participants from Countries has greatly contributed to the success of the meeting. The School of Mathematics was dedicated to Stampacchia, not only for his great mathematical achievements, but also because He founded it. The core of the Conference has been the various features of the Variational Analysis and their motivations and applications to concrete problems. Variational Analysis encompasses a large area of modem Mathematics, such as the classical Calculus of Variations, the theories of perturbation, approximation, subgradient, subderivates, set convergence and Variational Inequalities, and all these topics have been deeply and intensely dealt during the Conference. In particular, Variational Inequalities, which have been initiated by Stampacchia, inspired by Signorini Problem and the related work of G. Fichera, have offered a very great possibility of applications to several fundamental problems of Mathematical Physics, Engineering, Statistics and Economics. The pioneer work of Stampacchia and Lions can be considered as the basic kernel around which Variational Analysis is going to be outlined and constructed. The Conference has dealt with both finite and infinite dimensional analysis, showing that to carry on these two aspects disjointly is unsuitable for both.

Book Multi Valued Variational Inequalities and Inclusions

Download or read book Multi Valued Variational Inequalities and Inclusions written by Siegfried Carl and published by Springer Nature. This book was released on 2021-03-02 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book focuses on a large class of multi-valued variational differential inequalities and inclusions of stationary and evolutionary types with constraints reflected by subdifferentials of convex functionals. Its main goal is to provide a systematic, unified, and relatively self-contained exposition of existence, comparison and enclosure principles, together with other qualitative properties of multi-valued variational inequalities and inclusions. The problems under consideration are studied in different function spaces such as Sobolev spaces, Orlicz-Sobolev spaces, Sobolev spaces with variable exponents, and Beppo-Levi spaces. A general and comprehensive sub-supersolution method (lattice method) is developed for both stationary and evolutionary multi-valued variational inequalities, which preserves the characteristic features of the commonly known sub-supersolution method for single-valued, quasilinear elliptic and parabolic problems. This method provides a powerful tool for studying existence and enclosure properties of solutions when the coercivity of the problems under consideration fails. It can also be used to investigate qualitative properties such as the multiplicity and location of solutions or the existence of extremal solutions. This is the first in-depth treatise on the sub-supersolution (lattice) method for multi-valued variational inequalities without any variational structures, together with related topics. The choice of the included materials and their organization in the book also makes it useful and accessible to a large audience consisting of graduate students and researchers in various areas of Mathematical Analysis and Theoretical Physics.

Book Generalized Convexity  Nonsmooth Variational Inequalities  and Nonsmooth Optimization

Download or read book Generalized Convexity Nonsmooth Variational Inequalities and Nonsmooth Optimization written by Qamrul Hasan Ansari and published by CRC Press. This book was released on 2013-07-18 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: Until now, no book addressed convexity, monotonicity, and variational inequalities together. Generalized Convexity, Nonsmooth Variational Inequalities, and Nonsmooth Optimization covers all three topics, including new variational inequality problems defined by a bifunction. The first part of the book focuses on generalized convexity and generalized monotonicity. The authors investigate convexity and generalized convexity for both the differentiable and nondifferentiable case. For the nondifferentiable case, they introduce the concepts in terms of a bifunction and the Clarke subdifferential. The second part offers insight into variational inequalities and optimization problems in smooth as well as nonsmooth settings. The book discusses existence and uniqueness criteria for a variational inequality, the gap function associated with it, and numerical methods to solve it. It also examines characterizations of a solution set of an optimization problem and explores variational inequalities defined by a bifunction and set-valued version given in terms of the Clarke subdifferential. Integrating results on convexity, monotonicity, and variational inequalities into one unified source, this book deepens your understanding of various classes of problems, such as systems of nonlinear equations, optimization problems, complementarity problems, and fixed-point problems. The book shows how variational inequality theory not only serves as a tool for formulating a variety of equilibrium problems, but also provides algorithms for computational purposes.

Book Variational Analysis and Generalized Differentiation I

Download or read book Variational Analysis and Generalized Differentiation I written by Boris S. Mordukhovich and published by Springer Science & Business Media. This book was released on 2006-08-08 with total page 598 pages. Available in PDF, EPUB and Kindle. Book excerpt: Comprehensive and state-of-the art study of the basic concepts and principles of variational analysis and generalized differentiation in both finite-dimensional and infinite-dimensional spaces Presents numerous applications to problems in the optimization, equilibria, stability and sensitivity, control theory, economics, mechanics, etc.

Book Nonlinear Analysis

    Book Details:
  • Author : Qamrul Hasan Ansari
  • Publisher : Springer
  • Release : 2014-06-05
  • ISBN : 8132218833
  • Pages : 362 pages

Download or read book Nonlinear Analysis written by Qamrul Hasan Ansari and published by Springer. This book was released on 2014-06-05 with total page 362 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many of our daily-life problems can be written in the form of an optimization problem. Therefore, solution methods are needed to solve such problems. Due to the complexity of the problems, it is not always easy to find the exact solution. However, approximate solutions can be found. The theory of the best approximation is applicable in a variety of problems arising in nonlinear functional analysis and optimization. This book highlights interesting aspects of nonlinear analysis and optimization together with many applications in the areas of physical and social sciences including engineering. It is immensely helpful for young graduates and researchers who are pursuing research in this field, as it provides abundant research resources for researchers and post-doctoral fellows. This will be a valuable addition to the library of anyone who works in the field of applied mathematics, economics and engineering.

Book Convex Optimization Algorithms

Download or read book Convex Optimization Algorithms written by Dimitri Bertsekas and published by Athena Scientific. This book was released on 2015-02-01 with total page 576 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a comprehensive and accessible presentation of algorithms for solving convex optimization problems. It relies on rigorous mathematical analysis, but also aims at an intuitive exposition that makes use of visualization where possible. This is facilitated by the extensive use of analytical and algorithmic concepts of duality, which by nature lend themselves to geometrical interpretation. The book places particular emphasis on modern developments, and their widespread applications in fields such as large-scale resource allocation problems, signal processing, and machine learning. The book is aimed at students, researchers, and practitioners, roughly at the first year graduate level. It is similar in style to the author's 2009"Convex Optimization Theory" book, but can be read independently. The latter book focuses on convexity theory and optimization duality, while the present book focuses on algorithmic issues. The two books share notation, and together cover the entire finite-dimensional convex optimization methodology. To facilitate readability, the statements of definitions and results of the "theory book" are reproduced without proofs in Appendix B.

Book Fundamentals of Convex Analysis and Optimization

Download or read book Fundamentals of Convex Analysis and Optimization written by Rafael Correa and published by Springer Nature. This book was released on 2023-07-11 with total page 451 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book aims at an innovative approach within the framework of convex analysis and optimization, based on an in-depth study of the behavior and properties of the supremum of families of convex functions. It presents an original and systematic treatment of convex analysis, covering standard results and improved calculus rules in subdifferential analysis. The tools supplied in the text allow a direct approach to the mathematical foundations of convex optimization, in particular to optimality and duality theory. Other applications in the book concern convexification processes in optimization, non-convex integration of the Fenchel subdifferential, variational characterizations of convexity, and the study of Chebychev sets. At the same time, the underlying geometrical meaning of all the involved concepts and operations is highlighted and duly emphasized. A notable feature of the book is its unifying methodology, as well as the novelty of providing an alternative or complementary view to the traditional one in which the discipline is presented to students and researchers. This textbook can be used for courses on optimization, convex and variational analysis, addressed to graduate and post-graduate students of mathematics, and also students of economics and engineering. It is also oriented to provide specific background for courses on optimal control, data science, operations research, economics (game theory), etc. The book represents a challenging and motivating development for those experts in functional analysis, convex geometry, and any kind of researchers who may be interested in applications of their work.

Book Introduction to Continuous Optimization

Download or read book Introduction to Continuous Optimization written by Roman A. Polyak and published by Springer Nature. This book was released on 2021-04-29 with total page 552 pages. Available in PDF, EPUB and Kindle. Book excerpt: This self-contained monograph presents the reader with an authoritative view of Continuous Optimization, an area of mathematical optimization that has experienced major developments during the past 40 years. The book contains results which have not yet been covered in a systematic way as well as a summary of results on NR theory and methods developed over the last several decades. The readership is aimed to graduate students in applied mathematics, computer science, economics, as well as researchers working in optimization and those applying optimization methods for solving real life problems. Sufficient exercises throughout provide graduate students and instructors with practical utility in a two-semester course in Continuous Optimization. The topical coverage includes interior point methods, self-concordance theory and related complexity issues, first and second order methods with accelerated convergence, nonlinear rescaling (NR) theory and exterior point methods, just to mention a few. The book contains a unified approach to both interior and exterior point methods with emphasis of the crucial duality role. One of the main achievements of the book shows what makes the exterior point methods numerically attractive and why. The book is composed in five parts. The first part contains the basics of calculus, convex analysis, elements of unconstrained optimization, as well as classical results of linear and convex optimization. The second part contains the basics of self-concordance theory and interior point methods, including complexity results for LP, QP, and QP with quadratic constraint, semidefinite and conic programming. In the third part, the NR and Lagrangian transformation theories are considered and exterior point methods are described. Three important problems in finding equilibrium are considered in the fourth part. In the fifth and final part of the book, several important applications arising in economics, structural optimization, medicine, statistical learning theory, and more, are detailed. Numerical results, obtained by solving a number of real life and test problems, are also provided.

Book Convex Optimization Theory

Download or read book Convex Optimization Theory written by Dimitri Bertsekas and published by Athena Scientific. This book was released on 2009-06-01 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: An insightful, concise, and rigorous treatment of the basic theory of convex sets and functions in finite dimensions, and the analytical/geometrical foundations of convex optimization and duality theory. Convexity theory is first developed in a simple accessible manner, using easily visualized proofs. Then the focus shifts to a transparent geometrical line of analysis to develop the fundamental duality between descriptions of convex functions in terms of points, and in terms of hyperplanes. Finally, convexity theory and abstract duality are applied to problems of constrained optimization, Fenchel and conic duality, and game theory to develop the sharpest possible duality results within a highly visual geometric framework. This on-line version of the book, includes an extensive set of theoretical problems with detailed high-quality solutions, which significantly extend the range and value of the book. The book may be used as a text for a theoretical convex optimization course; the author has taught several variants of such a course at MIT and elsewhere over the last ten years. It may also be used as a supplementary source for nonlinear programming classes, and as a theoretical foundation for classes focused on convex optimization models (rather than theory). It is an excellent supplement to several of our books: Convex Optimization Algorithms (Athena Scientific, 2015), Nonlinear Programming (Athena Scientific, 2017), Network Optimization(Athena Scientific, 1998), Introduction to Linear Optimization (Athena Scientific, 1997), and Network Flows and Monotropic Optimization (Athena Scientific, 1998).

Book The Theory and Applications of Iteration Methods

Download or read book The Theory and Applications of Iteration Methods written by Ioannis K. Argyros and published by CRC Press. This book was released on 2022-01-20 with total page 471 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory and applications of Iteration Methods is a very fast-developing field of numerical analysis and computer methods. The second edition is completely updated and continues to present the state-of-the-art contemporary theory of iteration methods with practical applications, exercises, case studies, and examples of where and how they can be used. The Theory and Applications of Iteration Methods, Second Edition includes newly developed iteration methods taking advantage of the most recent technology (computers, robots, machines). It extends the applicability of well-established methods by increasing the convergence domain and offers sharper error tolerance. New proofs and ideas for handling convergence are introduced along with a new variety of story problems picked from diverse disciplines. This new edition is for researchers, practitioners, and students in engineering, economics, and computational sciences.

Book Convex Analysis and Beyond

Download or read book Convex Analysis and Beyond written by Boris S. Mordukhovich and published by Springer Nature. This book was released on 2022-04-24 with total page 597 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a unified theory of convex functions, sets, and set-valued mappings in topological vector spaces with its specifications to locally convex, Banach and finite-dimensional settings. These developments and expositions are based on the powerful geometric approach of variational analysis, which resides on set extremality with its characterizations and specifications in the presence of convexity. Using this approach, the text consolidates the device of fundamental facts of generalized differential calculus to obtain novel results for convex sets, functions, and set-valued mappings in finite and infinite dimensions. It also explores topics beyond convexity using the fundamental machinery of convex analysis to develop nonconvex generalized differentiation and its applications. The text utilizes an adaptable framework designed with researchers as well as multiple levels of students in mind. It includes many exercises and figures suited to graduate classes in mathematical sciences that are also accessible to advanced students in economics, engineering, and other applications. In addition, it includes chapters on convex analysis and optimization in finite-dimensional spaces that will be useful to upper undergraduate students, whereas the work as a whole provides an ample resource to mathematicians and applied scientists, particularly experts in convex and variational analysis, optimization, and their applications.

Book Overcoming the Failure of the Classical Generalized Interior point Regularity Conditions in Convex Optimization

Download or read book Overcoming the Failure of the Classical Generalized Interior point Regularity Conditions in Convex Optimization written by Ernö Robert Csetnek and published by Logos Verlag Berlin GmbH. This book was released on 2010-06-30 with total page 109 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this work is to present several new results concerning duality in scalar convex optimization, the formulation of sequential optimality conditions and some applications of the duality to the theory of maximal monotone operators. After recalling some properties of the classical generalized interiority notions which exist in the literature, we give some properties of the quasi interior and quasi-relative interior, respectively. By means of these notions we introduce several generalized interior-point regularity conditions which guarantee Fenchel duality. By using an approach due to Magnanti, we derive corresponding regularity conditions expressed via the quasi interior and quasi-relative interior which ensure Lagrange duality. These conditions have the advantage to be applicable in situations when other classical regularity conditions fail. Moreover, we notice that several duality results given in the literature on this topic have either superfluous or contradictory assumptions, the investigations we make offering in this sense an alternative. Necessary and sufficient sequential optimality conditions for a general convex optimization problem are established via perturbation theory. These results are applicable even in the absence of regularity conditions. In particular, we show that several results from the literature dealing with sequential optimality conditions are rediscovered and even improved. The second part of the thesis is devoted to applications of the duality theory to enlargements of maximal monotone operators in Banach spaces. After establishing a necessary and sufficient condition for a bivariate infimal convolution formula, by employing it we equivalently characterize the $\varepsilon$-enlargement of the sum of two maximal monotone operators. We generalize in this way a classical result concerning the formula for the $\varepsilon$-subdifferential of the sum of two proper, convex and lower semicontinuous functions. A characterization of fully en.