EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Asymptotic and Numerical Methods for Partial Differential Equations with Critical Parameters

Download or read book Asymptotic and Numerical Methods for Partial Differential Equations with Critical Parameters written by H.G. Kaper and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains the proceedings of the NATO Advanced Research Workshop on "Asymptotic-induced Numerical Methods for Partial Differ ential Equations, Critical Parameters, and Domain Decomposition," held at Beaune (France), May 25-28, 1992. The purpose of the workshop was to stimulate the integration of asymp totic analysis, domain decomposition methods, and symbolic manipulation tools for the numerical solution of partial differential equations (PDEs) with critical parameters. A workshop on the same topic was held at Argonne Na tional Laboratory in February 1990. (The proceedings were published under the title Asymptotic Analysis and the Numerical Solu.tion of Partial Differ ential Equations, Hans G. Kaper and Marc Garbey, eds., Lecture Notes in Pure and Applied Mathematics. Vol. 130, ·Marcel Dekker, Inc., New York, 1991.) In a sense, the present proceedings represent a progress report on the topic area. Comparing the two sets of proceedings, we see an increase in the quantity as well as the quality of the contributions. 110re research is being done in the topic area, and the interest covers serious, nontrivial problems. We are pleased with this outcome and expect to see even more advances in the next few years as the field progresses.

Book Asymptotic Analysis and the Numerical Solution of Partial Differential Equations

Download or read book Asymptotic Analysis and the Numerical Solution of Partial Differential Equations written by Hans G. Kaper and published by CRC Press. This book was released on 1991-02-25 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt: Integrates two fields generally held to be incompatible, if not downright antithetical, in 16 lectures from a February 1990 workshop at the Argonne National Laboratory, Illinois. The topics, of interest to industrial and applied mathematicians, analysts, and computer scientists, include singular per

Book Surveys in Applied Mathematics

Download or read book Surveys in Applied Mathematics written by Joseph B. Keller and published by Springer. This book was released on 2013-12-21 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: Partial differential equations play a central role in many branches of science and engineering. Therefore it is important to solve problems involving them. One aspect of solving a partial differential equation problem is to show that it is well-posed, i. e. , that it has one and only one solution, and that the solution depends continuously on the data of the problem. Another aspect is to obtain detailed quantitative information about the solution. The traditional method for doing this was to find a representation of the solution as a series or integral of known special functions, and then to evaluate the series or integral by numerical or by asymptotic methods. The shortcoming of this method is that there are relatively few problems for which such representations can be found. Consequently, the traditional method has been replaced by methods for direct solution of problems either numerically or asymptotically. This article is devoted to a particular method, called the "ray method," for the asymptotic solution of problems for linear partial differential equations governing wave propagation. These equations involve a parameter, such as the wavelength. . \, which is small compared to all other lengths in the problem. The ray method is used to construct an asymptotic expansion of the solution which is valid near . . \ = 0, or equivalently for k = 21r I A near infinity.

Book Numerical Methods for Partial Differential Equations

Download or read book Numerical Methods for Partial Differential Equations written by William F. Ames and published by Academic Press. This book was released on 2014-05-10 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt: Numerical Methods for Partial Differential Equations, Second Edition deals with the use of numerical methods to solve partial differential equations. In addition to numerical fluid mechanics, hopscotch and other explicit-implicit methods are also considered, along with Monte Carlo techniques, lines, fast Fourier transform, and fractional steps methods. Comprised of six chapters, this volume begins with an introduction to numerical calculation, paying particular attention to the classification of equations and physical problems, asymptotics, discrete methods, and dimensionless forms. Subsequent chapters focus on parabolic and hyperbolic equations, elliptic equations, and special topics ranging from singularities and shocks to Navier-Stokes equations and Monte Carlo methods. The final chapter discuss the general concepts of weighted residuals, with emphasis on orthogonal collocation and the Bubnov-Galerkin method. The latter procedure is used to introduce finite elements. This book should be a valuable resource for students and practitioners in the fields of computer science and applied mathematics.

Book Numerical Methods for Singularly Perturbed Differential Equations

Download or read book Numerical Methods for Singularly Perturbed Differential Equations written by Hans-Görg Roos and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: The analysis of singular perturbed differential equations began early in this century, when approximate solutions were constructed from asymptotic ex pansions. (Preliminary attempts appear in the nineteenth century [vD94].) This technique has flourished since the mid-1960s. Its principal ideas and methods are described in several textbooks. Nevertheless, asymptotic ex pansions may be impossible to construct or may fail to simplify the given problem; then numerical approximations are often the only option. The systematic study of numerical methods for singular perturbation problems started somewhat later - in the 1970s. While the research frontier has been steadily pushed back, the exposition of new developments in the analysis of numerical methods has been neglected. Perhaps the only example of a textbook that concentrates on this analysis is [DMS80], which collects various results for ordinary differential equations, but many methods and techniques that are relevant today (especially for partial differential equa tions) were developed after 1980.Thus contemporary researchers must comb the literature to acquaint themselves with earlier work. Our purposes in writing this introductory book are twofold. First, we aim to present a structured account of recent ideas in the numerical analysis of singularly perturbed differential equations. Second, this important area has many open problems and we hope that our book will stimulate further investigations.Our choice of topics is inevitably personal and reflects our own main interests.

Book Surveys in Applied Mathematics

Download or read book Surveys in Applied Mathematics written by Joseph B. Keller and published by Springer. This book was released on 2014-01-04 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: Partial differential equations play a central role in many branches of science and engineering. Therefore it is important to solve problems involving them. One aspect of solving a partial differential equation problem is to show that it is well-posed, i. e. , that it has one and only one solution, and that the solution depends continuously on the data of the problem. Another aspect is to obtain detailed quantitative information about the solution. The traditional method for doing this was to find a representation of the solution as a series or integral of known special functions, and then to evaluate the series or integral by numerical or by asymptotic methods. The shortcoming of this method is that there are relatively few problems for which such representations can be found. Consequently, the traditional method has been replaced by methods for direct solution of problems either numerically or asymptotically. This article is devoted to a particular method, called the "ray method," for the asymptotic solution of problems for linear partial differential equations governing wave propagation. These equations involve a parameter, such as the wavelength. . \, which is small compared to all other lengths in the problem. The ray method is used to construct an asymptotic expansion of the solution which is valid near . . \ = 0, or equivalently for k = 21r I A near infinity.

Book Recent Advances in Numerical Methods for Partial Differential Equations and Applications

Download or read book Recent Advances in Numerical Methods for Partial Differential Equations and Applications written by Xiaobing Feng and published by American Mathematical Soc.. This book was released on 2002 with total page 194 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is derived from lectures presented at the 2001 John H. Barrett Memorial Lectures at the University of Tennessee, Knoxville. The topic was computational mathematics, focusing on parallel numerical algorithms for partial differential equations, their implementation and applications in fluid mechanics and material science. Compiled here are articles from six of nine speakers. Each of them is a leading researcher in the field of computational mathematics and its applications. A vast area that has been coming into its own over the past 15 years, computational mathematics has experienced major developments in both algorithmic advances and applications to other fields. These developments have had profound implications in mathematics, science, engineering and industry. With the aid of powerful high performance computers, numerical simulation of physical phenomena is the only feasible method for analyzing many types of important phenomena, joining experimentation and theoretical analysis as the third method of scientific investigation. The three aspects: applications, theory, and computer implementation comprise a comprehensive overview of the topic. Leading lecturers were Mary Wheeler on applications, Jinchao Xu on theory, and David Keyes on computer implementation. Following the tradition of the Barrett Lectures, these in-depth articles and expository discussions make this book a useful reference for graduate students as well as the many groups of researchers working in advanced computations, including engineering and computer scientists.

Book Partial Differential Equations

Download or read book Partial Differential Equations written by R. M. M. Mattheij and published by SIAM. This book was released on 2005-01-01 with total page 697 pages. Available in PDF, EPUB and Kindle. Book excerpt: Partial differential equations (PDEs) are used to describe a large variety of physical phenomena, from fluid flow to electromagnetic fields, and are indispensable to such disparate fields as aircraft simulation and computer graphics. While most existing texts on PDEs deal with either analytical or numerical aspects of PDEs, this innovative and comprehensive textbook features a unique approach that integrates analysis and numerical solution methods and includes a third component - modeling - to address real-life problems. The authors believe that modeling can be learned only by doing; hence a separate chapter containing 16 user-friendly case studies of elliptic, parabolic, and hyperbolic equations is included and numerous exercises are included in all other chapters.

Book Asymptotic Analysis and the Numerical Solution of Partial Differential Equations

Download or read book Asymptotic Analysis and the Numerical Solution of Partial Differential Equations written by Hans G. Kaper and published by . This book was released on 2014-06-13 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt: Integrates two fields generally held to be incompatible, if not downright antithetical, in 16 lectures from a February 1990 workshop at the Argonne National Laboratory, Illinois. The topics, of interest to industrial and applied mathematicians, analysts, and computer scientists, include singular per

Book Partial Differential Equations  Theory  Control and Approximation

Download or read book Partial Differential Equations Theory Control and Approximation written by Philippe G. Ciarlet and published by Springer Science & Business Media. This book was released on 2013-11-29 with total page 431 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book collects papers mainly presented at the "International Conference on Partial Differential Equations: Theory, Control and Approximation" (May 28 to June 1, 2012 in Shanghai) in honor of the scientific legacy of the exceptional mathematician Jacques-Louis Lions. The contributors are leading experts from all over the world, including members of the Academies of Sciences in France, the USA and China etc., and their papers cover key fields of research, e.g. partial differential equations, control theory and numerical analysis, that Jacques-Louis Lions created or contributed so much to establishing.

Book Asymptotic Analysis of Differential Equations

Download or read book Asymptotic Analysis of Differential Equations written by R. B. White and published by World Scientific. This book was released on 2010 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This is a useful volume in which a wide selection of asymptotic techniques is clearly presented in a form suitable for both applied mathematicians and Physicists who require an introduction to asymptotic techniques." --Book Jacket.

Book Large Time Asymptotics for Solutions of Nonlinear Partial Differential Equations

Download or read book Large Time Asymptotics for Solutions of Nonlinear Partial Differential Equations written by P.L. Sachdev and published by Springer Science & Business Media. This book was released on 2009-10-29 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: A large number of physical phenomena are modeled by nonlinear partial differential equations, subject to appropriate initial/ boundary conditions; these equations, in general, do not admit exact solution. The present monograph gives constructive mathematical techniques which bring out large time behavior of solutions of these model equations. These approaches, in conjunction with modern computational methods, help solve physical problems in a satisfactory manner. The asymptotic methods dealt with here include self-similarity, balancing argument, and matched asymptotic expansions. The physical models discussed in some detail here relate to porous media equation, heat equation with absorption, generalized Fisher's equation, Burgers equation and its generalizations. A chapter each is devoted to nonlinear diffusion and fluid mechanics. The present book will be found useful by applied mathematicians, physicists, engineers and biologists, and would considerably help understand diverse natural phenomena.

Book Asymptotics for Dissipative Nonlinear Equations

Download or read book Asymptotics for Dissipative Nonlinear Equations written by Nakao Hayashi and published by Springer Science & Business Media. This book was released on 2006-04-21 with total page 570 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many of problems of the natural sciences lead to nonlinear partial differential equations. However, only a few of them have succeeded in being solved explicitly. Therefore different methods of qualitative analysis such as the asymptotic methods play a very important role. This is the first book in the world literature giving a systematic development of a general asymptotic theory for nonlinear partial differential equations with dissipation. Many typical well-known equations are considered as examples, such as: nonlinear heat equation, KdVB equation, nonlinear damped wave equation, Landau-Ginzburg equation, Sobolev type equations, systems of equations of Boussinesq, Navier-Stokes and others.

Book Differential Equations And Asymptotic Theory In Mathematical Physics

Download or read book Differential Equations And Asymptotic Theory In Mathematical Physics written by Hua Chen and published by World Scientific. This book was released on 2004-10-18 with total page 389 pages. Available in PDF, EPUB and Kindle. Book excerpt: This lecture notes volume encompasses four indispensable mini courses delivered at Wuhan University with each course containing the material from five one-hour lectures. Readers are brought up to date with exciting recent developments in the areas of asymptotic analysis, singular perturbations, orthogonal polynomials, and the application of Gevrey asymptotic expansion to holomorphic dynamical systems. The book also features important invited papers presented at the conference. Leading experts in the field cover a diverse range of topics from partial differential equations arising in cancer biology to transonic shock waves.The proceedings have been selected for coverage in:• Index to Scientific & Technical Proceedings® (ISTP® / ISI Proceedings)• Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings)• CC Proceedings — Engineering & Physical Sciences

Book A Stability Technique for Evolution Partial Differential Equations

Download or read book A Stability Technique for Evolution Partial Differential Equations written by Victor A. Galaktionov and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 388 pages. Available in PDF, EPUB and Kindle. Book excerpt: * Introduces a state-of-the-art method for the study of the asymptotic behavior of solutions to evolution partial differential equations. * Written by established mathematicians at the forefront of their field, this blend of delicate analysis and broad application is ideal for a course or seminar in asymptotic analysis and nonlinear PDEs. * Well-organized text with detailed index and bibliography, suitable as a course text or reference volume.

Book Asymptotic Analysis and the Numerical Solution of Partial Differential Equations

Download or read book Asymptotic Analysis and the Numerical Solution of Partial Differential Equations written by Hans G. Kaper and published by CRC Press. This book was released on 1991-02-25 with total page 288 pages. Available in PDF, EPUB and Kindle. Book excerpt: Integrates two fields generally held to be incompatible, if not downright antithetical, in 16 lectures from a February 1990 workshop at the Argonne National Laboratory, Illinois. The topics, of interest to industrial and applied mathematicians, analysts, and computer scientists, include singular per

Book Mathematical Methods for Wave Phenomena

Download or read book Mathematical Methods for Wave Phenomena written by Norman Bleistein and published by Academic Press. This book was released on 2012-12-02 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computer Science and Applied Mathematics: Mathematical Methods for Wave Phenomena focuses on the methods of applied mathematics, including equations, wave fronts, boundary value problems, and scattering problems. The publication initially ponders on first-order partial differential equations, Dirac delta function, Fourier transforms, asymptotics, and second-order partial differential equations. Discussions focus on prototype second-order equations, asymptotic expansions, asymptotic expansions of Fourier integrals with monotonic phase, method of stationary phase, propagation of wave fronts, and variable index of refraction. The text then examines wave equation in one space dimension, as well as initial boundary value problems, characteristics for the wave equation in one space dimension, and asymptotic solution of the Klein-Gordon equation. The manuscript offers information on wave equation in two and three dimensions and Helmholtz equation and other elliptic equations. Topics include energy integral, domain of dependence, and uniqueness, scattering problems, Green's functions, and problems in unbounded domains and the Sommerfeld radiation condition. The asymptotic techniques for direct scattering problems and the inverse methods for reflector imaging are also elaborated. The text is a dependable reference for computer science experts and mathematicians pursuing studies on the mathematical methods of wave phenomena.