Download or read book Asymptotic Analysis II written by F. Verhulst and published by Springer. This book was released on 2006-11-15 with total page 503 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Applied Asymptotic Analysis written by Peter David Miller and published by American Mathematical Soc.. This book was released on 2006 with total page 488 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a survey of asymptotic methods set in the current applied research context of wave propagation. It stresses rigorous analysis in addition to formal manipulations. Asymptotic expansions developed in the text are justified rigorously, and students are shown how to obtain solid error estimates for asymptotic formulae. The book relates examples and exercises to subjects of current research interest, such as the problem of locating the zeros of Taylor polynomials of entirenonvanishing functions and the problem of counting integer lattice points in subsets of the plane with various geometrical properties of the boundary. The book is intended for a beginning graduate course on asymptotic analysis in applied mathematics and is aimed at students of pure and appliedmathematics as well as science and engineering. The basic prerequisite is a background in differential equations, linear algebra, advanced calculus, and complex variables at the level of introductory undergraduate courses on these subjects. The book is ideally suited to the needs of a graduate student who, on the one hand, wants to learn basic applied mathematics, and on the other, wants to understand what is needed to make the various arguments rigorous. Down here in the Village, this is knownas the Courant point of view!! --Percy Deift, Courant Institute, New York Peter D. Miller is an associate professor of mathematics at the University of Michigan at Ann Arbor. He earned a Ph.D. in Applied Mathematics from the University of Arizona and has held positions at the Australian NationalUniversity (Canberra) and Monash University (Melbourne). His current research interests lie in singular limits for integrable systems.
Download or read book Asymptotic Analysis written by J.D. Murray and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: From the reviews: "A good introduction to a subject important for its capacity to circumvent theoretical and practical obstacles, and therefore particularly prized in the applications of mathematics. The book presents a balanced view of the methods and their usefulness: integrals on the real line and in the complex plane which arise in different contexts, and solutions of differential equations not expressible as integrals. Murray includes both historical remarks and references to sources or other more complete treatments. More useful as a guide for self-study than as a reference work, it is accessible to any upperclass mathematics undergraduate. Some exercises and a short bibliography included. Even with E.T. Copson's Asymptotic Expansions or N.G. de Bruijn's Asymptotic Methods in Analysis (1958), any academic library would do well to have this excellent introduction." (S. Puckette, University of the South) #Choice Sept. 1984#1
Download or read book Asymptotic Methods in Analysis written by N. G. de Bruijn and published by Courier Corporation. This book was released on 2014-03-05 with total page 225 pages. Available in PDF, EPUB and Kindle. Book excerpt: This pioneering study/textbook in a crucial area of pure and applied mathematics features worked examples instead of the formulation of general theorems. Extensive coverage of saddle-point method, iteration, and more. 1958 edition.
Download or read book Asymptotic Analysis and Perturbation Theory written by William Paulsen and published by CRC Press. This book was released on 2013-07-18 with total page 546 pages. Available in PDF, EPUB and Kindle. Book excerpt: Beneficial to both beginning students and researchers, Asymptotic Analysis and Perturbation Theory immediately introduces asymptotic notation and then applies this tool to familiar problems, including limits, inverse functions, and integrals. Suitable for those who have completed the standard calculus sequence, the book assumes no prior knowledge o
Download or read book Asymptotic Geometric Analysis Part I written by Shiri Artstein-Avidan and published by American Mathematical Soc.. This book was released on 2015-06-18 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: The authors present the theory of asymptotic geometric analysis, a field which lies on the border between geometry and functional analysis. In this field, isometric problems that are typical for geometry in low dimensions are substituted by an "isomorphic" point of view, and an asymptotic approach (as dimension tends to infinity) is introduced. Geometry and analysis meet here in a non-trivial way. Basic examples of geometric inequalities in isomorphic form which are encountered in the book are the "isomorphic isoperimetric inequalities" which led to the discovery of the "concentration phenomenon", one of the most powerful tools of the theory, responsible for many counterintuitive results. A central theme in this book is the interaction of randomness and pattern. At first glance, life in high dimension seems to mean the existence of multiple "possibilities", so one may expect an increase in the diversity and complexity as dimension increases. However, the concentration of measure and effects caused by convexity show that this diversity is compensated and order and patterns are created for arbitrary convex bodies in the mixture caused by high dimensionality. The book is intended for graduate students and researchers who want to learn about this exciting subject. Among the topics covered in the book are convexity, concentration phenomena, covering numbers, Dvoretzky-type theorems, volume distribution in convex bodies, and more.
Download or read book Nonstandard Asymptotic Analysis written by Imme van den Berg and published by Springer. This book was released on 2006-11-15 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: This research monograph considers the subject of asymptotics from a nonstandard view point. It is intended both for classical asymptoticists - they will discover a new approach to problems very familiar to them - and for nonstandard analysts but includes topics of general interest, like the remarkable behaviour of Taylor polynomials of elementary functions. Noting that within nonstandard analysis, "small", "large", and "domain of validity of asymptotic behaviour" have a precise meaning, a nonstandard alternative to classical asymptotics is developed. Special emphasis is given to applications in numerical approximation by convergent and divergent expansions: in the latter case a clear asymptotic answer is given to the problem of optimal approximation, which is valid for a large class of functions including many special functions. The author's approach is didactical. The book opens with a large introductory chapter which can be read without much knowledge of nonstandard analysis. Here the main features of the theory are presented via concrete examples, with many numerical and graphic illustrations. N
Download or read book Applied and Computational Complex Analysis Volume 2 written by Peter Henrici and published by Wiley-Interscience. This book was released on 1991-03-21 with total page 682 pages. Available in PDF, EPUB and Kindle. Book excerpt: A self-contained presentation of the major areas of complex analysis that are referred to and used in applied mathematics and mathematical physics. Topics discussed include infinite products, ordinary differential equations and asymptotic methods.
Download or read book Asymptotic Analysis of Random Walks written by A. A. Borovkov and published by Cambridge University Press. This book was released on 2020-10-29 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a companion book to Asymptotic Analysis of Random Walks: Heavy-Tailed Distributions by A.A. Borovkov and K.A. Borovkov. Its self-contained systematic exposition provides a highly useful resource for academic researchers and professionals interested in applications of probability in statistics, ruin theory, and queuing theory. The large deviation principle for random walks was first established by the author in 1967, under the restrictive condition that the distribution tails decay faster than exponentially. (A close assertion was proved by S.R.S. Varadhan in 1966, but only in a rather special case.) Since then, the principle has always been treated in the literature only under this condition. Recently, the author jointly with A.A. Mogul'skii removed this restriction, finding a natural metric for which the large deviation principle for random walks holds without any conditions. This new version is presented in the book, as well as a new approach to studying large deviations in boundary crossing problems. Many results presented in the book, obtained by the author himself or jointly with co-authors, are appearing in a monograph for the first time.
Download or read book Techniques of Asymptotic Analysis written by L. Sirovich and published by Springer Science & Business Media. This book was released on 1971-03-04 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: "In this second part of Willie Sugg's history of Cambridgeshire cricket the author focuses on the first documented period of sustained success for a Cambridgeshire club - that of the Cambridge Cricket Club." (back cover) Part two of three.
Download or read book Asymptotic Expansions of Integrals written by Norman Bleistein and published by Courier Corporation. This book was released on 1986-01-01 with total page 453 pages. Available in PDF, EPUB and Kindle. Book excerpt: Excellent introductory text, written by two experts, presents a coherent and systematic view of principles and methods. Topics include integration by parts, Watson's lemma, LaPlace's method, stationary phase, and steepest descents. Additional subjects include the Mellin transform method and less elementary aspects of the method of steepest descents. 1975 edition.
Download or read book Asymptotic Analysis for Functional Stochastic Differential Equations written by Jianhai Bao and published by Springer. This book was released on 2016-11-19 with total page 159 pages. Available in PDF, EPUB and Kindle. Book excerpt: This brief treats dynamical systems that involve delays and random disturbances. The study is motivated by a wide variety of systems in real life in which random noise has to be taken into consideration and the effect of delays cannot be ignored. Concentrating on such systems that are described by functional stochastic differential equations, this work focuses on the study of large time behavior, in particular, ergodicity.This brief is written for probabilists, applied mathematicians, engineers, and scientists who need to use delay systems and functional stochastic differential equations in their work. Selected topics from the brief can also be used in a graduate level topics course in probability and stochastic processes.
Download or read book Asymptotic Analysis written by Mikhail V. Fedoryuk and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 370 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book we present the main results on the asymptotic theory of ordinary linear differential equations and systems where there is a small parameter in the higher derivatives. We are concerned with the behaviour of solutions with respect to the parameter and for large values of the independent variable. The literature on this question is considerable and widely dispersed, but the methods of proofs are sufficiently similar for this material to be put together as a reference book. We have restricted ourselves to homogeneous equations. The asymptotic behaviour of an inhomogeneous equation can be obtained from the asymptotic behaviour of the corresponding fundamental system of solutions by applying methods for deriving asymptotic bounds on the relevant integrals. We systematically use the concept of an asymptotic expansion, details of which can if necessary be found in [Wasow 2, Olver 6]. By the "formal asymptotic solution" (F.A.S.) is understood a function which satisfies the equation to some degree of accuracy. Although this concept is not precisely defined, its meaning is always clear from the context. We also note that the term "Stokes line" used in the book is equivalent to the term "anti-Stokes line" employed in the physics literature.
Download or read book Asymptotic Analysis for Periodic Structures written by Alain Bensoussan and published by American Mathematical Soc.. This book was released on 2011-10-26 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a reprinting of a book originally published in 1978. At that time it was the first book on the subject of homogenization, which is the asymptotic analysis of partial differential equations with rapidly oscillating coefficients, and as such it sets the stage for what problems to consider and what methods to use, including probabilistic methods. At the time the book was written the use of asymptotic expansions with multiple scales was new, especially their use as a theoretical tool, combined with energy methods and the construction of test functions for analysis with weak convergence methods. Before this book, multiple scale methods were primarily used for non-linear oscillation problems in the applied mathematics community, not for analyzing spatial oscillations as in homogenization. In the current printing a number of minor corrections have been made, and the bibliography was significantly expanded to include some of the most important recent references. This book gives systematic introduction of multiple scale methods for partial differential equations, including their original use for rigorous mathematical analysis in elliptic, parabolic, and hyperbolic problems, and with the use of probabilistic methods when appropriate. The book continues to be interesting and useful to readers of different backgrounds, both from pure and applied mathematics, because of its informal style of introducing the multiple scale methodology and the detailed proofs.
Download or read book Asymptotic Analysis and Boundary Layers written by Jean Cousteix and published by Springer Science & Business Media. This book was released on 2007-03-22 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a new method of asymptotic analysis of boundary-layer problems, the Successive Complementary Expansion Method (SCEM). The first part is devoted to a general presentation of the tools of asymptotic analysis. It gives the keys to understand a boundary-layer problem and explains the methods to construct an approximation. The second part is devoted to SCEM and its applications in fluid mechanics, including external and internal flows.
Download or read book Asymptotic Analysis of Differential Equations written by R. B. White and published by World Scientific. This book was released on 2010 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This is a useful volume in which a wide selection of asymptotic techniques is clearly presented in a form suitable for both applied mathematicians and Physicists who require an introduction to asymptotic techniques." --Book Jacket.
Download or read book Mathematical Analysis II written by Vladimir A. Zorich and published by Krishna Prakashan Media. This book was released on 2010-11-16 with total page 792 pages. Available in PDF, EPUB and Kindle. Book excerpt: The second volume expounds classical analysis as it is today, as a part of unified mathematics, and its interactions with modern mathematical courses such as algebra, differential geometry, differential equations, complex and functional analysis. The book provides a firm foundation for advanced work in any of these directions.