Download or read book Fundamentals of Astrophysical Fluid Dynamics written by Shoji Kato and published by Springer Nature. This book was released on 2020-06-19 with total page 635 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers an overview of the fundamental dynamical processes, which are necessary to understand astrophysical phenomena, from the viewpoint of hydrodynamics, magnetohydrodynamics, and radiation hydrodynamics. The book consists of three parts: The first discusses the fundamentals of hydrodynamics necessary to understand the dynamics of astrophysical objects such as stars, interstellar gases and accretion disks. The second part reviews the interactions between gases and magnetic fields on fluid motions – the magnetohydrodynamics – highlighting the important role of magnetic fields in dynamical phenomena under astrophysical environments. The third part focuses on radiation hydrodynamics, introducing the hydrodynamic phenomena characterized by the coupling of radiation and gas motions and further on relativistic radiation hydrodynamics. Intended as a pedagogical introduction for advanced undergraduate and graduate students, it also provides comprehensive coverage of the fundamentals of astrophysical fluid dynamics, making it an effective resource not only for graduate courses, but also for beginners wanting to learn about hydrodynamics, magnetohydrodynamics, and radiation hydrodynamics in astrophysics independently.
Download or read book Principles of Astrophysical Fluid Dynamics written by Cathie Clarke and published by Cambridge University Press. This book was released on 2007-03-08 with total page 239 pages. Available in PDF, EPUB and Kindle. Book excerpt: An advanced textbook on AFD introducing astrophysics students to the necessary fluid dynamics, first published in 2007.
Download or read book Astrophysical Fluid Dynamics written by E. Battaner and published by Cambridge University Press. This book was released on 1996-02-23 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: This first course in fluid dynamics covers the basics and introduces a wealth of astronomical applications.
Download or read book Modern Fluid Dynamics for Physics and Astrophysics written by Oded Regev and published by Springer. This book was released on 2016-05-11 with total page 699 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book grew out of the need to provide students with a solid introduction to modern fluid dynamics. It offers a broad grounding in the underlying principles and techniques used, with some emphasis on applications in astrophysics and planetary science. The book comprehensively covers recent developments, methods and techniques, including, for example, new ideas on transitions to turbulence (via transiently growing stable linear modes), new approaches to turbulence (which remains the enigma of fluid dynamics), and the use of asymptotic approximation methods, which can give analytical or semi-analytical results and complement fully numerical treatments. The authors also briefly discuss some important considerations to be taken into account when developing a numerical code for computer simulation of fluid flows. Although the text is populated throughout with examples and problems from the field of astrophysics and planetary science, the text is eminently suitable as a general introduction to fluid dynamics. It is assumed that the readers are mathematically equipped with a reasonable knowledge in analysis, including basics of ordinary and partial differential equations and a good command of vector calculus and linear algebra. Each chapter concludes with bibliographical notes in which the authors briefly discuss the chapter's essential literature and give recommendations for further, deeper reading. Included in each chapter are a number of problems, some of them relevant to astrophysics and planetary science. The book is written for advanced undergraduate and graduate students, but will also prove a valuable source of reference for established researchers.
Download or read book Computational Methods for Astrophysical Fluid Flow written by Randall J. LeVeque and published by Springer Science & Business Media. This book was released on 2006-04-18 with total page 523 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book leads directly to the most modern numerical techniques for compressible fluid flow, with special consideration given to astrophysical applications. Emphasis is put on high-resolution shock-capturing finite-volume schemes based on Riemann solvers. The applications of such schemes, in particular the PPM method, are given and include large-scale simulations of supernova explosions by core collapse and thermonuclear burning and astrophysical jets. Parts two and three treat radiation hydrodynamics. The power of adaptive (moving) grids is demonstrated with a number of stellar-physical simulations showing very crispy shock-front structures.
Download or read book Stellar Astrophysical Fluid Dynamics written by Michael J. Thompson and published by Cambridge University Press. This book was released on 2003-05-01 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: In all phases of the life of a star, hydrodynamical processes play a major role. This volume gives a comprehensive overview of the state of knowledge in stellar astrophysical fluid dynamics, and its publication marked the 60th birthday of Douglas Gough, Professor of Theoretical Physics at the University of Cambridge and leading contributor to stellar astrophysical fluid dynamics. Topics include properties of pulsating stars, helioseismology, convection and mixing in stellar interiors, dynamics of stellar rotation, planet formation and the generation of stellar and planetary magnetic fields. Each chapter is written by leading experts in the field, and the book provides an overview that is central to any attempt to understand the properties of stars and their evolution. With extensive references to the technical literature, this is a valuable text for researchers and graduate students in stellar astrophysics.
Download or read book An Introduction to Astrophysical Fluid Dynamics written by Michael J. Thompson and published by Imperial College Press. This book was released on 2006 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction for graduate students and advanced undergraduate students to the field of astrophysical fluid dynamics. Although sometimes ignored, fluid dynamical processes play a central role in virtually all areas of astrophysics.No previous knowledge of fluid dynamics is assumed. After establishing the basic equations of fluid dynamics and the physics relevant to an astrophysical application, a variety of topics in the field are addressed. There is also a chapter introducing the reader to numerical methods. Appendices list useful physical constants and astronomical quantities, and provide handy reference material on Cartesian tensors, vector calculus in polar coordinates, self-adjoint eigenvalue problems and JWKB theory.
Download or read book Astrophysical Flows written by James E. Pringle and published by Cambridge University Press. This book was released on 2007-04-26 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: Almost all conventional matter in the Universe is fluid, and fluid dynamics plays a crucial role in astrophysics. This graduate textbook, first published in 2007, provides a basic understanding of the fluid dynamical processes relevant to astrophysics. The mathematics used to describe these processes is simplified to bring out the underlying physics. The authors cover many topics, including wave propagation, shocks, spherical flows, stellar oscillations, the instabilities caused by effects such as magnetic fields, thermal driving, gravity, shear flows, and the basic concepts of compressible fluid dynamics and magnetohydrodynamics. The authors are Directors of the UK Astrophysical Fluids Facility (UKAFF) at the University of Leicester, and editors of the Cambridge Astrophysics Series. This book has been developed from a course in astrophysical fluid dynamics taught at the University of Cambridge. It is suitable for graduate students in astrophysics, physics and applied mathematics, and requires only a basic familiarity with fluid dynamics.
Download or read book An Introduction to Astrophysical Hydrodynamics written by Steven N. Shore and published by Academic Press. This book was released on 2012-12-02 with total page 469 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is an introduction to astrophysical hydrodynamics for both astronomy and physics students. It provides a comprehensive and unified view of the general problems associated with fluids in a cosmic context, with a discussion of fluid dynamics and plasma physics. It is the only book on hydrodynamics that addresses the astrophysical context. Researchers and students will find this work to be an exceptional reference. Contents include chapters on irrotational and rotational flows, turbulence, magnetohydrodynamics, and instabilities.
Download or read book Fluid Dynamics and Dynamos in Astrophysics and Geophysics written by Andrew M. Soward and published by CRC Press. This book was released on 2005-03-16 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: The increasing power of computer resources along with great improvements in observational data in recent years have led to some remarkable and rapid advances in astrophysical fluid dynamics. The subject spans three distinct but overlapping communities whose interests focus on (1) accretion discs and high-energy astrophysics; (2) solar, stellar, and
Download or read book The Physics of Fluids and Plasmas written by Arnab Rai Choudhuri and published by Cambridge University Press. This book was released on 1998-11-26 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: A good working knowledge of fluid mechanics and plasma physics is essential for the modern astrophysicist. This graduate textbook provides a clear, pedagogical introduction to these core subjects. Assuming an undergraduate background in physics, this book develops fluid mechanics and plasma physics from first principles. This book is unique because it presents neutral fluids and plasmas in a unified scheme, clearly indicating both their similarities and their differences. Also, both the macroscopic (continuum) and microscopic (particle) theories are developed, establishing the connections between them. Throughout, key examples from astrophysics are used, though no previous knowledge of astronomy is assumed. Exercises are included at the end of chapters to test the reader's understanding. This textbook is aimed primarily at astrophysics graduate students. It will also be of interest to advanced students in physics and applied mathematics seeking a unified view of fluid mechanics and plasma physics, encompassing both the microscopic and macroscopic theories.
Download or read book Radiation Hydrodynamics written by John I. Castor and published by Cambridge University Press. This book was released on 2004-09-23 with total page 369 pages. Available in PDF, EPUB and Kindle. Book excerpt: Publisher Description
Download or read book Essential Fluid Dynamics for Scientists written by Jonathan Braithwaite and published by Morgan & Claypool Publishers. This book was released on 2018-01-09 with total page 195 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is an introduction to the subject of fluid mechanics, essential for students and researchers in many branches of science. It illustrates its fundamental principles with a variety of examples drawn mainly from astrophysics and geophysics as well as from everyday experience. Prior familiarity with basic thermodynamics and vector calculus is assumed.
Download or read book Fluid Mechanics of Planets and Stars written by Michael Le Bars and published by Springer. This book was released on 2019-07-15 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores the dynamics of planetary and stellar fluid layers, including atmospheres, oceans, iron cores, and convective and radiative zones in stars, describing the different theoretical, computational and experimental methods used to study these problems in fluid mechanics, including the advantages and limitations of each method for different problems. This scientific domain is by nature interdisciplinary and multi-method, but while much effort has been devoted to solving open questions within the various fields of mechanics, applied mathematics, physics, earth sciences and astrophysics, and while much progress has been made within each domain using theoretical, numerical and experimental approaches, cross-fertilizations have remained marginal. Going beyond the state of the art, the book provides readers with a global introduction and an up-to-date overview of relevant studies, fully addressing the wide range of disciplines and methods involved. The content builds on the CISM course “Fluid mechanics of planets and stars”, held in April 2018, which was part of the research project FLUDYCO, supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program.
Download or read book Energy Transfers in Fluid Flows written by Mahendra K. Verma and published by Cambridge University Press. This book was released on 2019-05-23 with total page 566 pages. Available in PDF, EPUB and Kindle. Book excerpt: An up-to-date comprehensive text useful for graduate students and academic researchers in the field of energy transfers in fluid flows. The initial part of the text covers discussion on energy transfer formalism in hydrodynamics and the latter part covers applications including passive scalar, buoyancy driven flows, magnetohydrodynamic (MHD), dynamo, rotating flows and compressible flows. Energy transfers among large-scale modes play a critical role in nonlinear instabilities and pattern formation and is discussed comprehensively in the chapter on buoyancy-driven flows. It derives formulae to compute Kolmogorov's energy flux, shell-to-shell energy transfers and locality. The book discusses the concept of energy transfer formalism which helps in calculating anisotropic turbulence.
Download or read book Fluid Dynamics for Physicists written by T. E. Faber and published by Cambridge University Press. This book was released on 1995-08-17 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is over three hundred and fifty years since Torricelli discovered the law obeyed by fountains, yet fluid dynamics remains an active and important branch of physics. This book provides an accessible and comprehensive account of the subject, emphasising throughout the fundamental physical principles, and stressing the connections with other branches of physics. Beginning with a gentle introduction, the book goes on to cover Bernouilli's theorem, compressible flow, potential flow, surface waves, viscosity, vorticity dynamics, thermal convection and instabilities, turbulence, non-Newtonian fluids and the propagation and attenuation of sound in gases. Undergraduate or graduate students in physics or engineering who are taking courses in fluid dynamics will find this book invaluable, but it will also be of great interest to anyone who wants to find out more about this fascinating subject.
Download or read book Atmospheric and Oceanic Fluid Dynamics written by Geoffrey K. Vallis and published by Cambridge University Press. This book was released on 2006-11-06 with total page 772 pages. Available in PDF, EPUB and Kindle. Book excerpt: Fluid dynamics is fundamental to our understanding of the atmosphere and oceans. Although many of the same principles of fluid dynamics apply to both the atmosphere and oceans, textbooks tend to concentrate on the atmosphere, the ocean, or the theory of geophysical fluid dynamics (GFD). This textbook provides a comprehensive unified treatment of atmospheric and oceanic fluid dynamics. The book introduces the fundamentals of geophysical fluid dynamics, including rotation and stratification, vorticity and potential vorticity, and scaling and approximations. It discusses baroclinic and barotropic instabilities, wave-mean flow interactions and turbulence, and the general circulation of the atmosphere and ocean. Student problems and exercises are included at the end of each chapter. Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation will be an invaluable graduate textbook on advanced courses in GFD, meteorology, atmospheric science and oceanography, and an excellent review volume for researchers. Additional resources are available at www.cambridge.org/9780521849692.