EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Assessment of Tumor Metabolism Using Hyperpolarized 13C Magnetic Resonance Spectroscopy

Download or read book Assessment of Tumor Metabolism Using Hyperpolarized 13C Magnetic Resonance Spectroscopy written by Jae Mo Park and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Unlike normal tissues, solid tumors have a metabolic phenotype that favors energy-inefficient glycolysis rather than more efficient, but oxygen consuming, oxidative phosphorylation, even when oxygen levels are adequate. This metabolic shift towards glycolysis, discovered by Warburg in 1924, has been studied for more than 80 years, but the mechanism of the phenomena is still unclear due to lack of tools for in vivo investigation. Dynamic nuclear polarization in combination with the recent development of a dissolution process that retains the increased polarization into the liquid state opened new possibilities for the real-time investigation of in vivo metabolism using C13 magnetic resonance spectroscopy. In particular, hyperpolarized [1-13C]pyruvate, a substrate occupying a key nodal point in the glucose metabolic pathway, has been successfully demonstrated as a neoplasm biomarker via elevated lactate labeling in tumors. However, additional downstream products of pyruvate metabolism, such as that occur in mitochondria of brain tumor, have been veiled due to low signal-to-noise ratios. The first part of the thesis is on the quantitative assessment of mitochondrial function in normal rat brain and glioma by detecting 13C-bicarbonate following the bolus injection of [1-13C]pyruvate. The feasibility of quantitatively detecting 13C-bicarbonate in tumor-bearing rat brain is demonstrated for the first time. The optimized protocol for chemical shift imaging and high concentration of hyperpolarized [1-13C]pyruvate were used to improve measurements of lactate and bicarbonate in C6 glioma-transplanted rat brains. Moreover, the immediate response to dichloroacetate treatment, which upregulates pyruvate flux to acetyl-CoA, is also presented. It is demonstrated that the simultaneous detection of lactate and bicarbonate provides a tool for a more comprehensive analysis of glioma metabolism and the assessment of metabolic agents as anti-cancer drugs. In the second part of the thesis, further investigation on mitochondrial metabolism, including tricarboxylic acid cycle, is presented by acquiring single-time point chemical shift imaging data from rat brain in vivo after administration of highly concentrated [2-13C]pyruvate. A C13 surface coil optimized for rat brain was built to increase sensitivity of signal detection. [5-13C]glutamate, [1-13C]acetyl carnitine, and [1-13C]citrate were detected besides [2-13C]pyruvate and [2-13C]lactate, for the first time in brain. Change of the tricarboxylic acid cycle activity in brain was also investigated by infusing dichloroacetate. The increase of [5-13C]glutamate was detected primarily from brain, whereas [1-13C]acetyl carnitine was increased in peripheral tissues after the infusion of dichloroacetate. The third part focuses on dynamic measurements of hyperpolarized substrates to obtain exchange rates in addition to concentrations, and proposes the apparent conversion rate as a new metric to detect glioma by comparing the conversion rates in glioma, normal appearing brain, and basilar vasculature in female Sprague-Dawley rats with C6 glioma cells implanted. Whereas single-time point measurements give a snapshot image of tissue metabolism, the estimated apparent rate constant yielded a better differentiation between the tissue types than the lactate-to-pyruvate ratio, which has been the most common metric used to date. This study demonstrates the feasibility of quantitatively detecting C13-labeled bicarbonate and glutamate in vivo, permitting the assessment of dichloroacetate-modulate changes in pyruvate dehydrogenase flux in both normal rat brain and glioma. The simultaneous detection of both lactate dehydrogenase and pyruvate dehydrogenase activities will likely improve our ability to both assess and monitor metabolic therapies of brain and other cancers by providing non-invasive in vivo measures of glycolysis and oxidative phosphorylation.

Book Imaging of Traumatic Brain Injury

Download or read book Imaging of Traumatic Brain Injury written by Yoshimi Anzai and published by Thieme. This book was released on 2015-03-11 with total page 519 pages. Available in PDF, EPUB and Kindle. Book excerpt: An image-rich text on neuroimaging of trauma patients Imaging of Traumatic Brain Injury is a radiological reference that covers all aspects of neurotrauma imaging and provides a clinical overview of traumatic brain injury (TBI). It describes the imaging features of acute head trauma, the pathophysiology of TBI, and the application of advanced imaging technology to brain-injured patients. Key Features: Covers acute as well as chronic traumatic brain injury Written in an easily accessible format, with pearls and summary boxes at the end of each chapter Includes state-of-the-art imaging techniques, including the multiplanar format, the utility of multiplanar reformats, perfusion imaging, susceptibility weighted imaging, and advanced MRI techniques Contains over 250 high-quality images This book will serve as a practical reference for practicing radiologists as well as radiology residents and fellows, neurosurgeons, trauma surgeons, and emergency physicians.

Book Metabolic Signatures of Prostate Cancer and Renal Cell Carcinoma Using High resolution NMR and Hyperpolarized 13C MRI

Download or read book Metabolic Signatures of Prostate Cancer and Renal Cell Carcinoma Using High resolution NMR and Hyperpolarized 13C MRI written by Jinny Sun and published by . This book was released on 2020 with total page 168 pages. Available in PDF, EPUB and Kindle. Book excerpt: Non-invasive techniques to assess metabolic reprogramming during cancer progression can be used to improve therapeutic selection and provide an early assessment of therapeutic response or resistance in individual patients. Prior studies have shown that metabolic reprogramming plays a key role in the development of prostate cancer and renal cell carcinoma (RCC). This dissertation further elucidates the metabolic alterations that occur in treatment-resistant prostate cancer and in patient-derived models of RCC using high-resolution nuclear magnetic resonance (NMR) spectroscopy and hyperpolarized (HP) 13C magnetic resonance imaging (MRI), with the goal of identifying new non-invasive diagnostic imaging tools. Glycolysis, metabolism of pyruvate and glutamate via the tricarboxylic acid (TCA) cycle, glutaminolysis, and glutathione synthesis are upregulated in castration-resistant prostate cancer (CRPC) compared to their androgen-dependent counterparts, using human cell lines as well a treatment-driven transgenic murine model. These metabolic alterations were reversed in castration-resistant murine tumors by treatment with a secondary androgen pathway inhibitor, apalutamide, suggesting that early metabolic responses to treatment can be monitored using non-invasive imaging techniques. Furthermore, treatment-emergent small cell neuroendocrine prostate cancer, a consequence of protracted treatment with primary androgen deprivation therapy and secondary androgen pathway inhibitors, exhibits significantly upregulated glycolysis, TCA cycle metabolism of pyruvate and glutamate, and glutaminolysis, as well as significantly altered redox capacity compared to castration-resistant prostate adenocarcinoma using patient-derived xenograft models. Finally, the metabolic differences associated with the tumor microenvironment were compared between various patient-derived models of RCC, finding that RCC patient-derived xenografts (PDXs) displayed higher redox capacity and were more proliferative than cells and tissue slices derived from the PDXs and maintained ex vivo. The work presented in this dissertation suggests that a combination of HP [1-13C]pyruvate, [2-13C]pyruvate, [5-13C]glutamine, and [1-13C]dehydroascorbate can be used to distinguish advanced prostate cancer and RCC subtypes in future HP 13C MRI of patients for improved treatment selection and monitoring.

Book The Heterogeneity of Cancer Metabolism

Download or read book The Heterogeneity of Cancer Metabolism written by Anne Le and published by Springer. This book was released on 2018-06-26 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: Genetic alterations in cancer, in addition to being the fundamental drivers of tumorigenesis, can give rise to a variety of metabolic adaptations that allow cancer cells to survive and proliferate in diverse tumor microenvironments. This metabolic flexibility is different from normal cellular metabolic processes and leads to heterogeneity in cancer metabolism within the same cancer type or even within the same tumor. In this book, we delve into the complexity and diversity of cancer metabolism, and highlight how understanding the heterogeneity of cancer metabolism is fundamental to the development of effective metabolism-based therapeutic strategies. Deciphering how cancer cells utilize various nutrient resources will enable clinicians and researchers to pair specific chemotherapeutic agents with patients who are most likely to respond with positive outcomes, allowing for more cost-effective and personalized cancer therapeutic strategies.

Book The Chemistry of Hyperpolarized Magnetic Resonance Probes

Download or read book The Chemistry of Hyperpolarized Magnetic Resonance Probes written by Eul Hyun Suh and published by Elsevier. This book was released on 2024-05-31 with total page 264 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Chemistry of Hyperpolarized Magnetic Resonance Probes, Volume Seven focuses on the chemical aspects of hyperpolarized NMR/MRI technology, with synthesis and characterizations of labeled compounds discussed from a practical point-of-view. A brief overview of the various hyperpolarization techniques are given, with the optimization of hyperpolarization conditions and the determination of critical parameters such as polarization level and T1 relaxation values described. A practical guide on the in vivo applications of hyperpolarized compounds in small animals is also included. Helps readers understand the structural features that determine the properties of HP-probes, such as chemical shift and relaxation times Aids readers in selecting stable isotope labeled probes for hyperpolarized NMR/MRI applications Teachers readers how to use the most appropriate synthetic methodology for the labeled probes Covers how to find the most suitable polarization technique (DNP, PHIP etc.) for the probe

Book Hyperpolarized Carbon 13 Magnetic Resonance Imaging and Spectroscopy

Download or read book Hyperpolarized Carbon 13 Magnetic Resonance Imaging and Spectroscopy written by Peder Larson and published by Elsevier. This book was released on 2021-11-26 with total page 296 pages. Available in PDF, EPUB and Kindle. Book excerpt: MRI with hyperpolarized carbon-13 agents is a powerful emerging imaging modality that can measure real-time metabolism in cells, animals, and humans. It uses endogenous, non-toxic contrast agents that a hyperpolarized, resulting in up to 100,000-fold increases in sensitivity. This technique uses no ionizing radiation, and is being applied in a range of human trials. It's primary use is for metabolic imaging, but it can also measure perfusion, pH, and necrosis. Hyperpolarized Carbon-13 Magnetic Resonance Imaging and Spectroscopy is designed to be a one stop shop for understanding hyperpolarized 13C MRI. This book explains the principles of this imaging modality, the requirements for performing studies, shows how to interpret the results, and gives an overview of current biomedical applications. It is suitable for engineers, scientists and clinicians in radiology and biomedical imaging who want to understand this technology. Presents the physics and hardware of dissolution dynamic nuclear polarization Explains the behaviour of hyperpolarized carbon-13 agents and how to image them Detailed guidance on experimental design and data interpretation Identifies promising and potential applications of hyperpolarized carbon-13 MR

Book Glioma Imaging

    Book Details:
  • Author : Whitney B. Pope
  • Publisher : Springer Nature
  • Release : 2019-11-11
  • ISBN : 3030273598
  • Pages : 286 pages

Download or read book Glioma Imaging written by Whitney B. Pope and published by Springer Nature. This book was released on 2019-11-11 with total page 286 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers physiologic, metabolic and molecular imaging for gliomas. Gliomas are the most common primary brain tumors. Imaging is critical for glioma management because of its ability to noninvasively define the anatomic location and extent of disease. While conventional MRI is used to guide current treatments, multiple studies suggest molecular features of gliomas may be identified with noninvasive imaging, including physiologic MRI and amino acid positron emission tomography (PET). These advanced imaging techniques have the promise to help elucidate underlying tumor biology and provide important information that could be integrated into routine clinical practice. The text outlines current clinical practice including common scenarios in which imaging interpretation impacts patient management. Gaps in knowledge and potential areas of advancement based on the application of more experimental imaging techniques will be discussed. In reviewing this book, readers will learn: current standard imaging methodologies used in clinical practice for patients undergoing treatment for glioma and the implications of emerging treatment modalities including immunotherapy the theoretical basis for advanced imaging techniques including diffusion and perfusion MRI, MR spectroscopy, CEST and amino acid PET the relationship between imaging and molecular/genomic glioma features incorporated in the WHO 2016 classification update and the potential application of machine learning about the recently adopted and FDA approved standard brain tumor protocol for multicenter drug trials of the gaps in knowledge that impede optimal patient management and the cutting edge imaging techniques that could address these deficits

Book Methodologies for Metabolomics

Download or read book Methodologies for Metabolomics written by Norbert W. Lutz and published by Cambridge University Press. This book was released on 2013-01-21 with total page 641 pages. Available in PDF, EPUB and Kindle. Book excerpt: Metabolomics, the global characterisation of the small molecule complement involved in metabolism, has evolved into a powerful suite of approaches for understanding the global physiological and pathological processes occurring in biological organisms. The diversity of metabolites, the wide range of metabolic pathways and their divergent biological contexts require a range of methodological strategies and techniques. Methodologies for Metabolomics provides a comprehensive description of the newest methodological approaches in metabolomic research. The most important technologies used to identify and quantify metabolites, including nuclear magnetic resonance and mass spectrometry, are highlighted. The integration of these techniques with classical biological methods is also addressed. Furthermore, the book presents statistical and chemometric methods for evaluation of the resultant data. The broad spectrum of topics includes a vast variety of organisms, samples and diseases, ranging from in vivo metabolomics in humans and animals to in vitro analysis of tissue samples, cultured cells and biofluids.

Book Molecular Imaging

Download or read book Molecular Imaging written by Ralph Weissleder and published by PMPH-USA. This book was released on 2010 with total page 1384 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of molecular imaging of living subjects have evolved considerably and have seen spectacular advances in chemistry, engineering and biomedical applications. This textbook was designed to fill the need for an authoritative source for this multi-disciplinary field. We have been fortunate to recruit over 80 leading authors contributing 75 individual chapters. Given the multidisciplinary nature of the field, the book is broken into six different sections: "Molecular Imaging technologies", "Chemistry", "Molecular Imaging in Cell and Molecular Biology", "Applications of Molecular Imaging", "Molecular Imaging in Drug Evaluation" with the final section comprised of chapters on computation, bioinformatics and modeling. The organization of this large amount of information is logical and strives to avoid redundancies among chapters. It encourages the use of figures to illustrate concepts and to provide numerous molecular imaging examples.

Book Metabolism in Cancer

    Book Details:
  • Author : Thorsten Cramer
  • Publisher : Springer
  • Release : 2016-08-24
  • ISBN : 3319421182
  • Pages : 272 pages

Download or read book Metabolism in Cancer written by Thorsten Cramer and published by Springer. This book was released on 2016-08-24 with total page 272 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook presents concise chapters written by internationally respected experts on various important aspects of cancer-associated metabolism, offering a comprehensive overview of the central features of this exciting research field. The discovery that tumor cells display characteristic alterations of metabolic pathways has significantly changed our understanding of cancer: while the first description of tumor-specific changes in cellular energetics was published more than 90 years ago, the causal significance of this observation for the pathogenesis of cancer was only discovered in the post-genome era. The first 10 years of the twenty-first century were characterized by rapid advances in our grasp of the functional role of cancer-specific metabolism as well as the underlying molecular pathways. Various unanticipated interrelations between metabolic alterations and cancer-driving pathways were identified and currently await translation into diagnostic and therapeutic applications. Yet the speed, quantity, and complexity of these new discoveries make it difficult for researchers to keep up to date with the latest developments, an issue this book helps to remedy.

Book Dynamic Hyperpolarized Nuclear Magnetic Resonance

Download or read book Dynamic Hyperpolarized Nuclear Magnetic Resonance written by Thomas Jue and published by Springer Nature. This book was released on 2021-05-21 with total page 279 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the first book in the series to focus on dynamic hyperpolarized nuclear magnetic resonance, a burgeoning topic in biophysics. The volume follows the format and style of the Handbook of Modern Biophysics series and expands on topics already discussed in previous volumes. It builds a theoretical and experimental framework for students and researchers who wish to investigate the biophysics and biomedical application of dynamic hyperpolarized NMR. All contributors are internationally recognized experts, lead the dynamic hyperpolarized NMR field, and have first-hand knowledge of the chapter material. The book covers the following topics: Hyperpolarization by dissolution Dynamic Nuclear Polarization Design considerations for implementing a hyperpolarizer Chemical Shift Imaging with Dynamic Hyperpolarized NMR Signal Sampling Strategies in Dynamic Hyperpolarized NMR Kinetic Modeling of Enzymatic Reactions in Analyzing Hyperpolarized NMR Data Using Hyperpolarized NMR to Understand Biochemistry from Cells to Humans Innovating Metabolic Biomarkers for Hyperpolarized NMR New Insights into Metabolic Regulation from Hyperpolarized 13C MRS/MRI Studies Novel Views on Heart Function from Dynamic Hyperpolarized NMR Insights on Lactate Metabolism in Skeletal Muscle based on 13C Dynamic Nuclear Polarization Studies About the Editors Dirk Mayer is Professor of Diagnostic Radiology and Nuclear Medicine at the University of Maryland and is the Director of Metabolic Imaging. He is a recognized expert on dynamic nuclear polarization (DNP) MRI-based imaging techniques and has optimized acquisition and reconstruction techniques, has constructed kinetic modeling for quantitative analysis, and has developing new probes. Thomas Jue is Professor of Biochemistry and Molecular Medicine at the University of California Davis. He is an internationally recognized expert in developing and applying magnetic resonance techniques to study animal as well as human physiology in vivo. He served as a Chair of the Biophysics Graduate Group Program at UC Davis, where he started to redesign a graduate curriculum that balances physical science/mathematics formalism and biomedical perspective in order to promote interest at the interface of physical science, engineering, mathematics, biology, and medicine. The Handbook of Modern Biophysics represents an aspect of that effort.

Book Brain Tumor Imaging

    Book Details:
  • Author : Elke Hattingen
  • Publisher : Springer
  • Release : 2015-09-02
  • ISBN : 3642450407
  • Pages : 166 pages

Download or read book Brain Tumor Imaging written by Elke Hattingen and published by Springer. This book was released on 2015-09-02 with total page 166 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the basics, the challenges and the limitations of state of the art brain tumor imaging and examines in detail its impact on diagnosis and treatment monitoring. It opens with an introduction to the clinically relevant physical principles of brain imaging. Since MR methodology plays a crucial role in brain imaging, the fundamental aspects of MR spectroscopy, MR perfusion and diffusion-weighted MR methods are described, focusing on the specific demands of brain tumor imaging. The potential and the limits of new imaging methodology are carefully addressed and compared to conventional MR imaging. In the main part of the book, the most important imaging criteria for the differential diagnosis of solid and necrotic brain tumors are delineated and illustrated in examples. A closing section is devoted to the use of MR methods for the monitoring of brain tumor therapy. The book is intended for radiologists, neurologists, neurosurgeons, oncologists and other scientists in the biomedical field with an interest in neuro-oncology.

Book In Vivo NMR Spectroscopy

    Book Details:
  • Author : Robin A. de Graaf
  • Publisher : John Wiley & Sons
  • Release : 2019-03-11
  • ISBN : 1119382548
  • Pages : 584 pages

Download or read book In Vivo NMR Spectroscopy written by Robin A. de Graaf and published by John Wiley & Sons. This book was released on 2019-03-11 with total page 584 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents basic concepts, experimental methodology and data acquisition, and processing standards of in vivo NMR spectroscopy This book covers, in detail, the technical and biophysical aspects of in vivo NMR techniques and includes novel developments in the field such as hyperpolarized NMR, dynamic 13C NMR, automated shimming, and parallel acquisitions. Most of the techniques are described from an educational point of view, yet it still retains the practical aspects appreciated by experimental NMR spectroscopists. In addition, each chapter concludes with a number of exercises designed to review, and often extend, the presented NMR principles and techniques. The third edition of In Vivo NMR Spectroscopy: Principles and Techniques has been updated to include experimental detail on the developing area of hyperpolarization; a description of the semi-LASER sequence, which is now a method of choice; updated chemical shift data, including the addition of 31P data; a troubleshooting section on common problems related to shimming, water suppression, and quantification; recent developments in data acquisition and processing standards; and MatLab scripts on the accompanying website for helping readers calculate radiofrequency pulses. Provide an educational explanation and overview of in vivo NMR, while maintaining the practical aspects appreciated by experimental NMR spectroscopists Features more experimental methodology than the previous edition End-of-chapter exercises that help drive home the principles and techniques and offer a more in-depth exploration of quantitative MR equations Designed to be used in conjunction with a teaching course on the subject In Vivo NMR Spectroscopy: Principles and Techniques, 3rd Edition is aimed at all those involved in fundamental and/or diagnostic in vivo NMR, ranging from people working in dedicated in vivo NMR institutes, to radiologists in hospitals, researchers in high-resolution NMR and MRI, and in areas such as neurology, physiology, chemistry, and medical biology.

Book Exploring Cancer Metabolic Reprogramming through Molecular Imaging

Download or read book Exploring Cancer Metabolic Reprogramming through Molecular Imaging written by Franca Podo and published by Frontiers Media SA. This book was released on 2017-07-27 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: The inclusion of oncogene-driven reprogramming of energy metabolism within the list of cancer hallmarks (Hanahan and Weinberg, Cell 2000, 2011) has provided major impetus to further investigate the existence of a much wider metabolic rewiring in cancer cells, which not only includes deregulated cellular bioenergetics, but also encompasses multiple links with a more comprehensive network of altered biochemical pathways. This network is currently held responsible for redirecting carbon and phosphorus fluxes through the biosynthesis of nucleotides, amino acids, lipids and phospholipids and for the production of second messengers essential to cancer cells growth, survival and invasiveness in the hostile tumor environment. The capability to develop such a concerted rewiring of biochemical pathways is a versatile tool adopted by cancer cells to counteract the host defense and eventually resist the attack of anticancer treatments. Integrated efforts elucidating key mechanisms underlying this complex cancer metabolic reprogramming have led to the identification of new signatures of malignancy that are providing a strong foundation for improving cancer diagnosis and monitoring tumor response to therapy using appropriate molecular imaging approaches. In particular, the recent evolution of positron emission tomography (PET), magnetic resonance spectroscopy (MRS), spectroscopic imaging (MRSI), functional MR imaging (fMRI) and optical imaging technologies, combined with complementary cellular imaging approaches, have created new ways to explore and monitor the effects of metabolic reprogramming in cancer at clinical and preclinical levels. Thus, the progress of high-tech engineering and molecular imaging technologies, combined with new generation genomic, proteomic and phosphoproteomic methods, can significantly improve the clinical effectiveness of image-based interventions in cancer and provide novel insights to design and validate new targeted therapies. The Frontiers in Oncology Research Topic “Exploring Cancer Metabolic Reprogramming Through Molecular Imaging” focusses on current achievements, challenges and needs in the application of molecular imaging methods to explore cancer metabolic reprogramming, and evaluate its potential impact on clinical decisions and patient outcome. A series of reviews and perspective articles, along with original research contributions on humans and on preclinical models have been concertedly included in the Topic to build an open forum on perspectives, present needs and future challenges of this cutting-edge research area.

Book NMR based Metabolomics

    Book Details:
  • Author : Hector C Keun
  • Publisher : Royal Society of Chemistry
  • Release : 2018-01-17
  • ISBN : 184973643X
  • Pages : 384 pages

Download or read book NMR based Metabolomics written by Hector C Keun and published by Royal Society of Chemistry. This book was released on 2018-01-17 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes the state of the art in the application of NMR spectroscopy to metabolomics and will be a key title for researchers and practitioners.

Book In cell NMR Spectroscopy

    Book Details:
  • Author : Yutaka Ito
  • Publisher : Royal Society of Chemistry
  • Release : 2019-12-09
  • ISBN : 1839160934
  • Pages : 322 pages

Download or read book In cell NMR Spectroscopy written by Yutaka Ito and published by Royal Society of Chemistry. This book was released on 2019-12-09 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: In-cell NMR spectroscopy is a relatively new field. Despite its short history, recent in-cell NMR-related publications in major journals indicate that this method is receiving significant general attention. This book provides the first informative work specifically focused on in-cell NMR. It details the historical background of in-cell NMR, host cells for in-cell NMR studies, methods for in-cell biological techniques and NMR spectroscopy, applications, and future perspectives. Researchers in biochemistry, biophysics, molecular biology, cell biology, structural biology as well as NMR analysts interested in biological applications will all find this book valuable reading.

Book Cancer Immunoprevention

    Book Details:
  • Author : Florencia McAllister
  • Publisher : Humana
  • Release : 2022-01-07
  • ISBN : 9781071620137
  • Pages : 227 pages

Download or read book Cancer Immunoprevention written by Florencia McAllister and published by Humana. This book was released on 2022-01-07 with total page 227 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume provides methods and techniques to further the study of cancer immunoprevention. Chapters describe tumor-associated antigens, cancer immune-preventive vaccines, generation of TILs, development of monoclonal antibodies, immunoprofiling technologies, tissue multispectral imaging techniques, mass cytometry on suspensions, mutiparametric flow cytometry, genomic expression analysis, and proteomic profiling of tumor microenvironment cell populations and metabolic assessment through novel imaging technologies. Written in the format of the highly successful Methods in Molecular Biology series, each chapter includes an introduction to the topic, lists necessary materials and reagents, includes tips on troubleshooting and known pitfalls, and step-by-step, readily reproducible protocols. Authoritative and cutting-edge, Cancer Immunoprevention: Methods and Protocol aims to further understanding, development of interventional active strategies, and immune-interception of cancer.