EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Assessment of Available Fast Neutron Irradiation Facilities and the Validation of PLATE 2 0 to Support the Conceptual Design of a Gas Test Loop in the Advanced Test Reactor

Download or read book Assessment of Available Fast Neutron Irradiation Facilities and the Validation of PLATE 2 0 to Support the Conceptual Design of a Gas Test Loop in the Advanced Test Reactor written by William Frances Skerjanc and published by . This book was released on 2005 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt: Current research and development programs being conducted in the United States for advanced fuels and materials to support the Advanced Fuel Cycle Initiative (AFCI), Generation-IV reactors (GEN-IV), and space nuclear programs require an irradiation testing facility capable of simulating anticipated operating environments. The lack of domestic irradiation facilities to meet these programmatic goals has led to a proposed Gas Test Loop (GTL) for fuel and material irradiation to be installed in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The GTL will utilize highly enriched U2́3Si2́2 fuel plates to increase the fast neutron flux density to simulate actual fast reactor conditions. The INL has chosen the computer code PLATE 2.0 (Plate Lifetime Accurate Thermal Evaluation, version 2.0) to model the steady-state thermal properties of the fuel plates. The INL requires all new computer software used in modeling applications to undergo qualification before it can be used for safety analysis. The qualification plan specified by the INL requires a user's manual be developed for PLATE 2.0 along with verification and validation (V & V) of the output results against benchmark data. This thesis presents a study of foreign and domestic fast neutron irradiation facilities, a description of PLATE 2.0 and its user's manual, and the results from the V & V of PLATE 2.0 for U2́3Si2́2 fuel plates.

Book Design of a Gas Test Loop Facility for the Advanced Test Reactor

Download or read book Design of a Gas Test Loop Facility for the Advanced Test Reactor written by C. A. Wemple and published by . This book was released on 2005 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The Office of Nuclear Energy within the U.S. Department of Energy (DOE-NE) has identified the need for irradiation testing of nuclear fuels and materials, primarily in support of the Generation IV (Gen-IV) and Advanced Fuel Cycle Initiative (AFCI) programs. These fuel development programs require a unique environment to test and qualify potential reactor fuel forms. This environment should combine a high fast neutron flux with a hard neutron spectrum and high irradiation temperature. An effort is presently underway at the Idaho National Laboratory (INL) to modify a large flux trap in the Advanced Test Reactor (ATR) to accommodate such a test facility [1,2]. The Gas Test Loop (GTL) Project Conceptual Design was initiated to determine basic feasibility of designing, constructing, and installing in a host irradiation facility, an experimental vehicle that can replicate with reasonable fidelity the fast-flux test environment needed for fuels and materials irradiation testing for advanced reactor concepts. Such a capability will be needed if programs such as the AFCI, Gen-IV, the Next Generation Nuclear Plant (NGNP), and space nuclear propulsion are to meet development objectives and schedules. These programs are beginning some irradiations now, but many call for fast flux testing within this decade.

Book Gas Test Loop Facilities Alternatives Assessment Report Rev 1

Download or read book Gas Test Loop Facilities Alternatives Assessment Report Rev 1 written by William J. Skerjanc and published by . This book was released on 2005 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: An important task in the Gas Test Loop (GTL) conceptual design was to determine the best facility to serve as host for this apparatus, which will allow fast-flux neutron testing in an existing nuclear facility. A survey was undertaken of domestic and foreign nuclear reactors and accelerator facilities to arrive at that determination. Two major research reactors in the U.S. were considered in detail, the Advanced Test Reactor (ATR) and the High Flux Isotope Reactor (HFIR), each with sufficient power to attain the required neutron fluxes. HFIR routinely operates near its design power limit of 100 MW. ATR has traditionally operated at less than half its design power limit of 250 MW. Both of these reactors should be available for at least the next 30 years. The other major U.S. research reactor, the Missouri University Research Reactor, does not have sufficient power to reach the required neutron flux nor do the smaller research reactors. Of the foreign reactors investigated, BOR-60 is perhaps the most attractive. Monju and BN 600 are power reactors for their respective electrical grids. Although the Joyo reactor is vigorously campaigning for customers, local laws regarding transport of radioactive material mean it would be very difficult to retrieve test articles from either Japanese reactor for post irradiation examination. PHENIX is scheduled to close in 2008 and is fully booked until then. FBTR is limited to domestic (Indian) users only. Data quality is often suspect in Russia. The only accelerator seriously considered was the Fuel and Material Test Station (FMTS) currently proposed for operation at Los Alamos National Laboratory. The neutron spectrum in FMTS is similar to that found in a fast reactor, but it has a pronounced high-energy tail that is atypical of fast fission reactor spectra. First irradiation in the FMTS is being contemplated for 2008. Detailed review of these facilities resulted in the recommendation that the ATR would be the best host for the GTL.

Book Status of Fast Reactor Research and Technology Development

Download or read book Status of Fast Reactor Research and Technology Development written by International Atomic Energy Agency and published by . This book was released on 2012 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Based on a recommendation from the Technical Working Group on Fast Reactors, this publication is a regular update of previous publications on fast reactor technology. The publication provides comprehensive and detailed information on the technology of fast neutron reactors. The focus is on practical issues that are useful to engineers, scientists, managers, university students and professors. The main issues of discussion are experience in design, construction, operation and decommissioning, various areas of research and development, engineering, safety and national strategies, and public acceptance of fast reactors. In the summary the reader will find national strategies, international initiatives on innovative (i.e. Generation IV) systems and an assessment of public acceptance as related to fast reactors."--Résumé de l'éditeur.

Book Fast neutron Beam Irradiation Facility in the NASA Plum Brook Test Reactor

Download or read book Fast neutron Beam Irradiation Facility in the NASA Plum Brook Test Reactor written by and published by . This book was released on 1967 with total page 36 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Boosted Fast Flux Loop Final Report

Download or read book Boosted Fast Flux Loop Final Report written by and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The Boosted Fast Flux Loop (BFFL) project was initiated to determine basic feasibility of designing, constructing, and installing in a host irradiation facility, an experimental vehicle that can replicate with reasonable fidelity the fast-flux test environment needed for fuels and materials irradiation testing for advanced reactor concepts. Originally called the Gas Test Loop (GTL) project, the activity included (1) determination of requirements that must be met for the GTL to be responsive to potential users, (2) a survey of nuclear facilities that may successfully host the GTL, (3) conceptualizing designs for hardware that can support the needed environments for neutron flux intensity and energy spectrum, atmosphere, flow, etc. needed by the experimenters, and (4) examining other aspects of such a system, such as waste generation and disposal, environmental concerns, needs for additional infrastructure, and requirements for interfacing with the host facility. A revised project plan included requesting an interim decision, termed CD-1A, that had objectives of' establishing the site for the project at the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL), deferring the CD 1 application, and authorizing a research program that would resolve the most pressing technical questions regarding GTL feasibility, including issues relating to the use of booster fuel in the ATR. Major research tasks were (1) hydraulic testing to establish flow conditions through the booster fuel, (2) mini-plate irradiation tests and post-irradiation examination to alleviate concerns over corrosion at the high heat fluxes planned, (3) development and demonstration of booster fuel fabrication techniques, and (4) a review of the impact of the GTL on the ATR safety basis. A revised cooling concept for the apparatus was conceptualized, which resulted in renaming the project to the BFFL. Before the subsequent CD-1 approval request could be made, a decision was made in April 2006 that further funding for the project would be suspended. Remaining funds have been used to prepare and irradiate mini-plates of the proposed booster fuel. The current baseline design is for a set of three test positions inside an in-pile tube with a thermal neutron absorber and heat sink made of aluminum mixed with hafnium. Operating the ATR at power levels needed to achieve the required fast flux will result in an estimated increase in ATR fuel consumption between 15 and 20% above present rates and a reduction in the time between fuel replacements. Preliminary safety analyses conducted have indicted safe operation of the ATR with the GTL under normal, abnormal, and postulated accident conditions. More comprehensive analyses are needed.

Book Progress Report

Download or read book Progress Report written by E. R. Astley and published by . This book was released on 1965 with total page 130 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Characteristics of the LPTR Fast Neutron Irradiation Facility

Download or read book Characteristics of the LPTR Fast Neutron Irradiation Facility written by Garth E. Cummings and published by . This book was released on 1963 with total page 22 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book The Advanced Test Reactor National Scientific User Facility Advancing Nuclear Technology

Download or read book The Advanced Test Reactor National Scientific User Facility Advancing Nuclear Technology written by and published by . This book was released on 2009 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: To help ensure the long-term viability of nuclear energy through a robust and sustained research and development effort, the U.S. Department of Energy (DOE) designated the Advanced Test Reactor and associated post-irradiation examination facilities a National Scientific User Facility (ATR NSUF), allowing broader access to nuclear energy researchers. The mission of the ATR NSUF is to provide access to world-class nuclear research facilities, thereby facilitating the advancement of nuclear science and technology. The ATR NSUF seeks to create an engaged academic and industrial user community that routinely conducts reactor-based research. Cost free access to the ATR and PIE facilities is granted based on technical merit to U.S. university-led experiment teams conducting non-proprietary research. Proposals are selected via independent technical peer review and relevance to DOE mission. Extensive publication of research results is expected as a condition for access. During FY 2008, the first full year of ATR NSUF operation, five university-led experiments were awarded access to the ATR and associated post-irradiation examination facilities. The ATR NSUF has awarded four new experiments in early FY 2009, and anticipates awarding additional experiments in the fall of 2009 as the results of the second 2009 proposal call. As the ATR NSUF program mature over the next two years, the capability to perform irradiation research of increasing complexity will become available. These capabilities include instrumented irradiation experiments and post-irradiation examinations on materials previously irradiated in U.S. reactor material test programs. The ATR critical facility will also be made available to researchers. An important component of the ATR NSUF an education program focused on the reactor-based tools available for resolving nuclear science and technology issues. The ATR NSUF provides education programs including a summer short course, internships, faculty-student team projects and faculty/staff exchanges. In June of 2008, the first week-long ATR NSUF Summer Session was attended by 68 students, university faculty and industry representatives. The Summer Session featured presentations by 19 technical experts from across the country and covered topics including irradiation damage mechanisms, degradation of reactor materials, LWR and gas reactor fuels, and non-destructive evaluation. High impact research results from leveraging the entire research infrastructure, including universities, industry, small business, and the national laboratories. To increase overall research capability, ATR NSUF seeks to form strategic partnerships with university facilities that add significant nuclear research capability to the ATR NSUF and are accessible to all ATR NSUF users. Current partner facilities include the MIT Reactor, the University of Michigan Irradiated Materials Testing Laboratory, the University of Wisconsin Characterization Laboratory, and the University of Nevada, Las Vegas transmission Electron Microscope User Facility. Needs for irradiation of material specimens at tightly controlled temperatures are being met by dedication of a large in-pile pressurized water loop facility for use by ATR NSUF users. Several environmental mechanical testing systems are under construction to determine crack growth rates and fracture toughness on irradiated test systems.

Book Irradiation Environment of the Materials Test Station

Download or read book Irradiation Environment of the Materials Test Station written by and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Conceptual design of the proposed Materials Test Station (MTS) at the Los Alamos Neutron Science Center (LANSCE) is now complete. The principal mission is the irradiation testing of advanced fuels and materials for fast-spectrum nuclear reactor applications. The neutron spectrum in the fuel irradiation region of MTS is sufficiently close to that of fast reactor that MTS can match the fast reactor fuel centerline temperature and temperature profile across a fuel pellet. This is an important characteristic since temperature and temperature gradients drive many phenomena related to fuel performance, such as phase stability, stoichiometry, and fission product transport. The MTS irradiation environment is also suitable in many respects for fusion materials testing. In particular, the rate of helium production relative to atomic displacements at the peak flux position in MTS matches well that of fusion reactor first wall. Nuclear transmutation of the elemental composition of the fusion alloy EUROFER97 in MTS is similar to that expected in the first wall of a fusion reactor.

Book Advanced Test Reactor National Scientific User Facility

Download or read book Advanced Test Reactor National Scientific User Facility written by and published by . This book was released on 2013 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: The Advanced Test Reactor National Scientific User Facility (ATR NSUF), based at the Idaho National Laboratory in the United States, is supporting Department of Energy and industry research efforts to ensure the properties of materials in light water reactors are well understood. The ATR NSUF is providing this support through three main efforts: establishing unique infrastructure necessary to conduct research on highly radioactive materials, conducting research in conjunction with industry partners on life extension relevant topics, and providing training courses to encourage more U.S. researchers to understand and address LWR materials issues. In 2010 and 2011, several advanced instruments with capability focused on resolving nuclear material performance issues through analysis on the micro (10-6 m) to atomic (10-10 m) scales were installed primarily at the Center for Advanced Energy Studies (CAES) in Idaho Falls, Idaho. These instruments included a local electrode atom probe (LEAP), a field-emission gun scanning transmission electron microscope (FEG-STEM), a focused ion beam (FIB) system, a Raman spectrometer, and an nanoindentor/atomic force microscope. Ongoing capability enhancements intended to support industry efforts include completion of two shielded, irradiation assisted stress corrosion cracking (IASCC) test loops, the first of which will come online in early calendar year 2013, a pressurized and controlled chemistry water loop for the ATR center flux trap, and a dedicated facility intended to house post irradiation examination equipment. In addition to capability enhancements at the main site in Idaho, the ATR NSUF also welcomed two new partner facilities in 2011 and two new partner facilities in 2012; the Oak Ridge National Laboratory, High Flux Isotope Reactor (HFIR) and associated hot cells and the University California Berkeley capabilities in irradiated materials analysis were added in 2011. In 2012, Purdue University's Interaction of Materials with Particles and Components Testing (IMPACT) facility and the Pacific Northwest Nuclear Laboratory (PNNL) Radiochemistry Processing Laboratory (RPL) and PIE facilities were added. The ATR NSUF annually hosts a weeklong event called User's Week in which students and faculty from universities as well as other interested parties from regulatory agencies or industry convene in Idaho Falls, Idaho to see presentations from ATR NSUF staff as well as select researchers from the materials research field. User's week provides an overview of current materials research topics of interest and an opportunity for young researchers to understand the process of performing work through ATR NSUF. Additionally, to increase the number of researchers engaged in LWR materials issues, a series of workshops are in progress to introduce research staff to stress corrosion cracking, zirconium alloy degradation, and uranium dioxide degradation during in-reactor use.

Book Challenges for Coolants in Fast Neutron Spectrum Systems

Download or read book Challenges for Coolants in Fast Neutron Spectrum Systems written by International Atomic Energy Agency and published by . This book was released on 2020-07-30 with total page 268 pages. Available in PDF, EPUB and Kindle. Book excerpt: This publication evaluates the different coolant options considered for nuclear applications with a fast neutron spectrum (i.e. fusion, fission and accelerators), compiles the latest information in the field and identifies research needs.

Book THERMAL PERFORMANCE OF A FAST NEUTRON TEST CONCEPT FOR THE ADVANCED TEST REACTOR

Download or read book THERMAL PERFORMANCE OF A FAST NEUTRON TEST CONCEPT FOR THE ADVANCED TEST REACTOR written by and published by . This book was released on 2008 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: Since 1967, the Advanced Test Reactor (ATR) located at Idaho National Laboratory (INL) has provided state-of-the-art experimental irradiation testing capability. A unique design is investigated herein for the purpose of providing a fast neutron flux test capability in the ATR. This new test capability could be brought on line in approximately 5 or 6 years, much sooner than a new test reactor could be built, to provide an interim fast-flux test capability in the timeframe before a fast-flux research reactor could be built. The proposed cost for this system is approximately $63M, much less than the cost of a new fast-flux test reactor. A concept has been developed to filter out a large portion of the thermal flux component by using a thermally conductive neutron absorber block. The objective of this study is to determine the feasibility of this experiment cooling concept.

Book Nuclear Power

    Book Details:
  • Author : National Research Council
  • Publisher : National Academies Press
  • Release : 1992-02-01
  • ISBN : 0309043956
  • Pages : 234 pages

Download or read book Nuclear Power written by National Research Council and published by National Academies Press. This book was released on 1992-02-01 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: The construction of nuclear power plants in the United States is stopping, as regulators, reactor manufacturers, and operators sort out a host of technical and institutional problems. This volume summarizes the status of nuclear power, analyzes the obstacles to resumption of construction of nuclear plants, and describes and evaluates the technological alternatives for safer, more economical reactors. Topics covered include: Institutional issues-including regulatory practices at the federal and state levels, the growing trends toward greater competition in the generation of electricity, and nuclear and nonnuclear generation options. Critical evaluation of advanced reactors-covering attributes such as cost, construction time, safety, development status, and fuel cycles. Finally, three alternative federal research and development programs are presented.

Book Advanced Test Reactor National Scientific User Facility Partnerships

Download or read book Advanced Test Reactor National Scientific User Facility Partnerships written by and published by . This book was released on 2012 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In 2007, the United States Department of Energy designated the Advanced Test Reactor (ATR), located at Idaho National Laboratory, as a National Scientific User Facility (NSUF). This designation made test space within the ATR and post-irradiation examination (PIE) equipment at INL available for use by researchers via a proposal and peer review process. The goal of the ATR NSUF is to provide researchers with the best ideas access to the most advanced test capability, regardless of the proposer's physical location. Since 2007, the ATR NSUF has expanded its available reactor test space, and obtained access to additional PIE equipment. Recognizing that INL may not have all the desired PIE equipment, or that some equipment may become oversubscribed, the ATR NSUF established a Partnership Program. This program enables and facilitates user access to several university and national laboratories. So far, seven universities and one national laboratory have been added to the ATR NSUF with capability that includes reactor-testing space, PIE equipment, and ion beam irradiation facilities. With the addition of these universities, irradiation can occur in multiple reactors and post-irradiation exams can be performed at multiple universities. In each case, the choice of facilities is based on the user's technical needs. Universities and laboratories included in the ATR NSUF partnership program are as follows: (1) Nuclear Services Laboratories at North Carolina State University; (2) PULSTAR Reactor Facility at North Carolina State University; (3) Michigan Ion Beam Laboratory (1.7 MV Tandetron accelerator) at the University of Michigan; (4) Irradiated Materials at the University of Michigan; (5) Harry Reid Center Radiochemistry Laboratories at University of Nevada, Las Vegas; (6) Characterization Laboratory for Irradiated Materials at the University of Wisconsin-Madison; (7) Tandem Accelerator Ion Beam. (1.7 MV terminal voltage tandem ion accelerator) at the University of Wisconsin-Madison; (8) Illinois Institute of Technology (IIT) Materials Research Collaborative Access Team (MRCAT) beamline at Argonne National Laboratory's Advanced Photon Source; and (9) Nanoindenter in the University of California at Berkeley (UCB) Nuclear Engineering laboratory Materials have been analyzed for ATR NSUF users at the Advanced Photon Source at the MRCAT beam, the NIST Center for Neutron Research in Gaithersburg, MD, the Los Alamos Neutron Science Center, and the SHaRE user facility at Oak Ridge National Laboratory (ORNL). Additionally, ORNL has been accepted as a partner facility to enable ATR NSUF users to access the facilities at the High Flux Isotope Reactor and related facilities.

Book Fast Flux Test Facility Periodic Technical Report

Download or read book Fast Flux Test Facility Periodic Technical Report written by and published by . This book was released on 1969 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: This report was prepared at Pacific Northwest Laboratory by Battelle-Northwest (BNW) under Contract No. AT(45-1)-1830 for the Atomic Energy Commission, Division of Reactor Development and Technology. It is a report on design-related technical progress for the Fast Flux Test Facility, during the period October 1, 1968 through February 28, 1969.