Download or read book Artificial Intelligence For High Energy Physics written by Paolo Calafiura and published by World Scientific. This book was released on 2022-01-05 with total page 829 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Higgs boson discovery at the Large Hadron Collider in 2012 relied on boosted decision trees. Since then, high energy physics (HEP) has applied modern machine learning (ML) techniques to all stages of the data analysis pipeline, from raw data processing to statistical analysis. The unique requirements of HEP data analysis, the availability of high-quality simulators, the complexity of the data structures (which rarely are image-like), the control of uncertainties expected from scientific measurements, and the exabyte-scale datasets require the development of HEP-specific ML techniques. While these developments proceed at full speed along many paths, the nineteen reviews in this book offer a self-contained, pedagogical introduction to ML models' real-life applications in HEP, written by some of the foremost experts in their area.
Download or read book Deep Learning For Physics Research written by Martin Erdmann and published by World Scientific. This book was released on 2021-06-25 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: A core principle of physics is knowledge gained from data. Thus, deep learning has instantly entered physics and may become a new paradigm in basic and applied research.This textbook addresses physics students and physicists who want to understand what deep learning actually means, and what is the potential for their own scientific projects. Being familiar with linear algebra and parameter optimization is sufficient to jump-start deep learning. Adopting a pragmatic approach, basic and advanced applications in physics research are described. Also offered are simple hands-on exercises for implementing deep networks for which python code and training data can be downloaded.
Download or read book The Principles of Deep Learning Theory written by Daniel A. Roberts and published by Cambridge University Press. This book was released on 2022-05-26 with total page 473 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume develops an effective theory approach to understanding deep neural networks of practical relevance.
Download or read book Statistical Analysis Techniques in Particle Physics written by Ilya Narsky and published by John Wiley & Sons. This book was released on 2013-10-24 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: Modern analysis of HEP data needs advanced statistical tools to separate signal from background. This is the first book which focuses on machine learning techniques. It will be of interest to almost every high energy physicist, and, due to its coverage, suitable for students.
Download or read book An Introduction to the Physics of High Energy Accelerators written by D. A. Edwards and published by John Wiley & Sons. This book was released on 2008-11-20 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first half deals with the motion of a single particle under the influence of electronic and magnetic fields. The basic language of linear and circular accelerators is developed. The principle of phase stability is introduced along with phase oscillations in linear accelerators and synchrotrons. Presents a treatment of betatron oscillations followed by an excursion into nonlinear dynamics and its application to accelerators. The second half discusses intensity dependent effects, particularly space charge and coherent instabilities. Includes tables of parameters for a selection of accelerators which are used in the numerous problems provided at the end of each chapter.
Download or read book Artificial Intelligence For Science A Deep Learning Revolution written by Alok Choudhary and published by World Scientific. This book was released on 2023-03-21 with total page 803 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique collection introduces AI, Machine Learning (ML), and deep neural network technologies leading to scientific discovery from the datasets generated both by supercomputer simulation and by modern experimental facilities.Huge quantities of experimental data come from many sources — telescopes, satellites, gene sequencers, accelerators, and electron microscopes, including international facilities such as the Large Hadron Collider (LHC) at CERN in Geneva and the ITER Tokamak in France. These sources generate many petabytes moving to exabytes of data per year. Extracting scientific insights from these data is a major challenge for scientists, for whom the latest AI developments will be essential.The timely handbook benefits professionals, researchers, academics, and students in all fields of science and engineering as well as AI, ML, and neural networks. Further, the vision evident in this book inspires all those who influence or are influenced by scientific progress.
Download or read book Data Analysis in High Energy Physics written by Olaf Behnke and published by John Wiley & Sons. This book was released on 2013-08-30 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: This practical guide covers the essential tasks in statistical data analysis encountered in high energy physics and provides comprehensive advice for typical questions and problems. The basic methods for inferring results from data are presented as well as tools for advanced tasks such as improving the signal-to-background ratio, correcting detector effects, determining systematics and many others. Concrete applications are discussed in analysis walkthroughs. Each chapter is supplemented by numerous examples and exercises and by a list of literature and relevant links. The book targets a broad readership at all career levels - from students to senior researchers. An accompanying website provides more algorithms as well as up-to-date information and links. * Free solutions manual available for lecturers at www.wiley-vch.de/supplements/
Download or read book Introducing Particle Physics written by Tom Whyntie and published by Icon Books. This book was released on 2014-06-05 with total page 290 pages. Available in PDF, EPUB and Kindle. Book excerpt: What really happens at the most fundamental levels of nature? Introducing Particle Physics explores the very frontiers of our knowledge, even showing how particle physicists are now using theory and experiment to probe our very concept of what is real. From the earliest history of the atomic theory through to supersymmetry, micro-black holes, dark matter, the Higgs boson, and the possibly mythical graviton, practising physicist and CERN contributor Tom Whyntie gives us a mind-expanding tour of cutting-edge science. Featuring brilliant illustrations from Oliver Pugh, Introducing Particle Physics is a unique tour through the most astonishing and challenging science being undertaken today.
Download or read book Experimental Particle Physics written by Deepak Kar and published by Programme: Iop Expanding Physi. This book was released on 2019-08-29 with total page 175 pages. Available in PDF, EPUB and Kindle. Book excerpt: Experimental Particle Physics is written for advanced undergraduate or beginning postgraduate students starting data analysis in experimental particle physics at the Large Hadron Collider (LHC) at CERN. Assuming only a basic knowledge of quantum mechanics and special relativity, the text reviews the current state of affairs in particle physics, before comprehensively introducing all the ingredients that go into an analysis.
Download or read book Better Deep Learning written by Jason Brownlee and published by Machine Learning Mastery. This book was released on 2018-12-13 with total page 575 pages. Available in PDF, EPUB and Kindle. Book excerpt: Deep learning neural networks have become easy to define and fit, but are still hard to configure. Discover exactly how to improve the performance of deep learning neural network models on your predictive modeling projects. With clear explanations, standard Python libraries, and step-by-step tutorial lessons, you’ll discover how to better train your models, reduce overfitting, and make more accurate predictions.
Download or read book A Citizen s Guide to Artificial Intelligence written by John Zerilli and published by MIT Press. This book was released on 2021-02-23 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: A concise but informative overview of AI ethics and policy. Artificial intelligence, or AI for short, has generated a staggering amount of hype in the past several years. Is it the game-changer it's been cracked up to be? If so, how is it changing the game? How is it likely to affect us as customers, tenants, aspiring home-owners, students, educators, patients, clients, prison inmates, members of ethnic and sexual minorities, voters in liberal democracies? This book offers a concise overview of moral, political, legal and economic implications of AI. It covers the basics of AI's latest permutation, machine learning, and considers issues including transparency, bias, liability, privacy, and regulation.
Download or read book Universal Artificial Intelligence written by Marcus Hutter and published by Springer Science & Business Media. This book was released on 2005-12-29 with total page 294 pages. Available in PDF, EPUB and Kindle. Book excerpt: Personal motivation. The dream of creating artificial devices that reach or outperform human inteUigence is an old one. It is also one of the dreams of my youth, which have never left me. What makes this challenge so interesting? A solution would have enormous implications on our society, and there are reasons to believe that the AI problem can be solved in my expected lifetime. So, it's worth sticking to it for a lifetime, even if it takes 30 years or so to reap the benefits. The AI problem. The science of artificial intelligence (AI) may be defined as the construction of intelligent systems and their analysis. A natural definition of a system is anything that has an input and an output stream. Intelligence is more complicated. It can have many faces like creativity, solving prob lems, pattern recognition, classification, learning, induction, deduction, build ing analogies, optimization, surviving in an environment, language processing, and knowledge. A formal definition incorporating every aspect of intelligence, however, seems difficult. Most, if not all known facets of intelligence can be formulated as goal driven or, more precisely, as maximizing some utility func tion. It is, therefore, sufficient to study goal-driven AI; e. g. the (biological) goal of animals and humans is to survive and spread. The goal of AI systems should be to be useful to humans.
Download or read book Particle Physics Reference Library written by Christian W. Fabjan and published by Springer Nature. This book was released on 2020 with total page 1083 pages. Available in PDF, EPUB and Kindle. Book excerpt: This second open access volume of the handbook series deals with detectors, large experimental facilities and data handling, both for accelerator and non-accelerator based experiments. It also covers applications in medicine and life sciences. A joint CERN-Springer initiative, the "Particle Physics Reference Library" provides revised and updated contributions based on previously published material in the well-known Landolt-Boernstein series on particle physics, accelerators and detectors (volumes 21A, B1,B2,C), which took stock of the field approximately one decade ago. Central to this new initiative is publication under full open access
Download or read book Artificial Intelligence For High Energy Physics written by Paolo Calafiura and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Higgs boson discovery at the Large Hadron Collider in 2012 relied on boosted decision trees. Since then, high energy physics (HEP) has applied modern machine learning (ML) techniques to all stages of the data analysis pipeline, from raw data processing to statistical analysis. The unique requirements of HEP data analysis, the availability of high-quality simulators, the complexity of the data structures (which rarely are image-like), the control of uncertainties expected from scientific measurements, and the exabyte-scale datasets require the development of HEP-specific ML techniques. While these developments proceed at full speed along many paths, the nineteen reviews in this book offer aself-contained, pedagogical introduction to ML models' real-life applications in HEP, written by some of the foremost experts in their area
Download or read book The World According to Physics written by Jim Al-Khalili and published by Princeton University Press. This book was released on 2020-03-10 with total page 336 pages. Available in PDF, EPUB and Kindle. Book excerpt: Scale -- Space and time -- Energy and matter -- The quantum world -- Thermodynamics and the arrow of time -- Unification -- The future of physics -- The usefulness of physics -- Thinking like a physicist.
Download or read book Artificial Intelligence for Science AI4S written by Qinghai Miao and published by Springer Nature. This book was released on with total page 118 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Machine Learning Techniques for Space Weather written by Enrico Camporeale and published by Elsevier. This book was released on 2018-05-31 with total page 454 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine Learning Techniques for Space Weather provides a thorough and accessible presentation of machine learning techniques that can be employed by space weather professionals. Additionally, it presents an overview of real-world applications in space science to the machine learning community, offering a bridge between the fields. As this volume demonstrates, real advances in space weather can be gained using nontraditional approaches that take into account nonlinear and complex dynamics, including information theory, nonlinear auto-regression models, neural networks and clustering algorithms. Offering practical techniques for translating the huge amount of information hidden in data into useful knowledge that allows for better prediction, this book is a unique and important resource for space physicists, space weather professionals and computer scientists in related fields. - Collects many representative non-traditional approaches to space weather into a single volume - Covers, in an accessible way, the mathematical background that is not often explained in detail for space scientists - Includes free software in the form of simple MATLAB® scripts that allow for replication of results in the book, also familiarizing readers with algorithms