Download or read book Effective Statistical Learning Methods for Actuaries I written by Michel Denuit and published by . This book was released on 2019 with total page 441 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book summarizes the state of the art in generalized linear models (GLMs) and their various extensions: GAMs, mixed models and credibility, and some nonlinear variants (GNMs). In order to deal with tail events, analytical tools from Extreme Value Theory are presented. Going beyond mean modeling, it considers volatility modeling (double GLMs) and the general modeling of location, scale and shape parameters (GAMLSS). Actuaries need these advanced analytical tools to turn the massive data sets now at their disposal into opportunities. The exposition alternates between methodological aspects and case studies, providing numerical illustrations using the R statistical software. The technical prerequisites are kept at a reasonable level in order to reach a broad readership. This is the first of three volumes entitled Effective Statistical Learning Methods for Actuaries. Written by actuaries for actuaries, this series offers a comprehensive overview of insurance data analytics with applications to P & C, life and health insurance. Although closely related to the other two volumes, this volume can be read independently.
Download or read book Predictive Modeling Applications in Actuarial Science written by Edward W. Frees and published by Cambridge University Press. This book was released on 2014-07-28 with total page 565 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is for actuaries and financial analysts developing their expertise in statistics and who wish to become familiar with concrete examples of predictive modeling.
Download or read book Machine Learning in Insurance written by Jens Perch Nielsen and published by MDPI. This book was released on 2020-12-02 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning is a relatively new field, without a unanimous definition. In many ways, actuaries have been machine learners. In both pricing and reserving, but also more recently in capital modelling, actuaries have combined statistical methodology with a deep understanding of the problem at hand and how any solution may affect the company and its customers. One aspect that has, perhaps, not been so well developed among actuaries is validation. Discussions among actuaries’ “preferred methods” were often without solid scientific arguments, including validation of the case at hand. Through this collection, we aim to promote a good practice of machine learning in insurance, considering the following three key issues: a) who is the client, or sponsor, or otherwise interested real-life target of the study? b) The reason for working with a particular data set and a clarification of the available extra knowledge, that we also call prior knowledge, besides the data set alone. c) A mathematical statistical argument for the validation procedure.
Download or read book Hire Purpose written by Deanna Mulligan and published by Columbia University Press. This book was released on 2020-10-13 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: A WALL STREET JOURNAL BUSINESS BESTSELLER The future of work is already here, and what this future looks like must be a pressing concern for the current generation of leaders in both the private and public sectors. In the next ten to fifteen years, rapid change in a post-pandemic world and emerging technology will revolutionize nearly every job, eliminate some, and create new forms of work that we have yet to imagine. How can we survive and thrive in the face of such drastic change? Deanna Mulligan offers a practical, broad-minded look at the effects of workplace evolution and automation and why the private sector needs to lead the charge in shaping a values-based response. With a focus on the power of education, Mulligan proposes that the solutions to workforce upheaval lie in reskilling and retraining for individuals and companies adapting to rapid change. By creating lifelong learning opportunities that break down boundaries between the classroom and the workplace, businesses can foster personal and career well-being and growth for their employees. Drawing on her own experiences, historical examples, and reports from the frontiers where these issues are unfolding, Mulligan details how business leaders can prepare for and respond to technological disruption. Providing a framework for concrete and meaningful action, Hire Purpose is an essential read about the transformations that will shape the next decade and beyond.
Download or read book Effective Statistical Learning Methods for Actuaries II written by Michel Denuit and published by Springer Nature. This book was released on 2020-11-16 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book summarizes the state of the art in tree-based methods for insurance: regression trees, random forests and boosting methods. It also exhibits the tools which make it possible to assess the predictive performance of tree-based models. Actuaries need these advanced analytical tools to turn the massive data sets now at their disposal into opportunities. The exposition alternates between methodological aspects and numerical illustrations or case studies. All numerical illustrations are performed with the R statistical software. The technical prerequisites are kept at a reasonable level in order to reach a broad readership. In particular, master's students in actuarial sciences and actuaries wishing to update their skills in machine learning will find the book useful. This is the second of three volumes entitled Effective Statistical Learning Methods for Actuaries. Written by actuaries for actuaries, this series offers a comprehensive overview of insurance data analytics with applications to P&C, life and health insurance.
Download or read book Logic Based Artificial Intelligence written by Jack Minker and published by Springer Science & Business Media. This book was released on 2000-12-31 with total page 640 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of mathematical logic as a formalism for artificial intelligence was recognized by John McCarthy in 1959 in his paper on Programs with Common Sense. In a series of papers in the 1960's he expanded upon these ideas and continues to do so to this date. It is now 41 years since the idea of using a formal mechanism for AI arose. It is therefore appropriate to consider some of the research, applications and implementations that have resulted from this idea. In early 1995 John McCarthy suggested to me that we have a workshop on Logic-Based Artificial Intelligence (LBAI). In June 1999, the Workshop on Logic-Based Artificial Intelligence was held as a consequence of McCarthy's suggestion. The workshop came about with the support of Ephraim Glinert of the National Science Foundation (IIS-9S2013S), the American Association for Artificial Intelligence who provided support for graduate students to attend, and Joseph JaJa, Director of the University of Maryland Institute for Advanced Computer Studies who provided both manpower and financial support, and the Department of Computer Science. We are grateful for their support. This book consists of refereed papers based on presentations made at the Workshop. Not all of the Workshop participants were able to contribute papers for the book. The common theme of papers at the workshop and in this book is the use of logic as a formalism to solve problems in AI.
Download or read book Effective Statistical Learning Methods for Actuaries I written by Michel Denuit and published by Springer Nature. This book was released on 2019-09-03 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book summarizes the state of the art in generalized linear models (GLMs) and their various extensions: GAMs, mixed models and credibility, and some nonlinear variants (GNMs). In order to deal with tail events, analytical tools from Extreme Value Theory are presented. Going beyond mean modeling, it considers volatility modeling (double GLMs) and the general modeling of location, scale and shape parameters (GAMLSS). Actuaries need these advanced analytical tools to turn the massive data sets now at their disposal into opportunities. The exposition alternates between methodological aspects and case studies, providing numerical illustrations using the R statistical software. The technical prerequisites are kept at a reasonable level in order to reach a broad readership. This is the first of three volumes entitled Effective Statistical Learning Methods for Actuaries. Written by actuaries for actuaries, this series offers a comprehensive overview of insurance data analytics with applications to P&C, life and health insurance. Although closely related to the other two volumes, this volume can be read independently.
Download or read book Computational Actuarial Science with R written by Arthur Charpentier and published by CRC Press. This book was released on 2014-08-26 with total page 652 pages. Available in PDF, EPUB and Kindle. Book excerpt: A Hands-On Approach to Understanding and Using Actuarial ModelsComputational Actuarial Science with R provides an introduction to the computational aspects of actuarial science. Using simple R code, the book helps you understand the algorithms involved in actuarial computations. It also covers more advanced topics, such as parallel computing and C/
Download or read book Healthcare Risk Adjustment and Predictive Modeling written by Ian G. Duncan and published by ACTEX Publications. This book was released on 2011 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text is listed on the Course of Reading for SOA Fellowship study in the Group & Health specialty track. Healthcare Risk Adjustment and Predictive Modeling provides a comprehensive guide to healthcare actuaries and other professionals interested in healthcare data analytics, risk adjustment and predictive modeling. The book first introduces the topic with discussions of health risk, available data, clinical identification algorithms for diagnostic grouping and the use of grouper models. The second part of the book presents the concept of data mining and some of the common approaches used by modelers. The third and final section covers a number of predictive modeling and risk adjustment case-studies, with examples from Medicaid, Medicare, disability, depression diagnosis and provider reimbursement, as well as the use of predictive modeling and risk adjustment outside the U.S. For readers who wish to experiment with their own models, the book also provides access to a test dataset.
Download or read book Biomedical and Business Applications Using Artificial Neural Networks and Machine Learning written by Richard Segall and published by Engineering Science Reference. This book was released on 2021-11 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book covers applications of artificial neural networks (ANN) and machine learning (ML) aspects of artificial intelligence to applications to the biomedical and business world including their interface to applications for screening for diseases to applications to large-scale credit card purchasing patterns"--
Download or read book Information Systems Design and Intelligent Applications written by Vikrant Bhateja and published by Springer. This book was released on 2018-03-01 with total page 1112 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is a collection of high-quality peer-reviewed research papers presented at International Conference on Information System Design and Intelligent Applications (INDIA 2017) held at Duy Tan University, Da Nang, Vietnam during 15-17 June 2017. The book covers a wide range of topics of computer science and information technology discipline ranging from image processing, database application, data mining, grid and cloud computing, bioinformatics and many others. The various intelligent tools like swarm intelligence, artificial intelligence, evolutionary algorithms, bio-inspired algorithms have been well applied in different domains for solving various challenging problems.
Download or read book Statistical Size Distributions in Economics and Actuarial Sciences written by Christian Kleiber and published by John Wiley & Sons. This book was released on 2003-10-24 with total page 354 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive account of economic size distributions around the world and throughout the years In the course of the past 100 years, economists and applied statisticians have developed a remarkably diverse variety of income distribution models, yet no single resource convincingly accounts for all of these models, analyzing their strengths and weaknesses, similarities and differences. Statistical Size Distributions in Economics and Actuarial Sciences is the first collection to systematically investigate a wide variety of parametric models that deal with income, wealth, and related notions. Christian Kleiber and Samuel Kotz survey, compliment, compare, and unify all of the disparate models of income distribution, highlighting at times a lack of coordination between them that can result in unnecessary duplication. Considering models from eight languages and all continents, the authors discuss the social and economic implications of each as well as distributions of size of loss in actuarial applications. Specific models covered include: Pareto distributions Lognormal distributions Gamma-type size distributions Beta-type size distributions Miscellaneous size distributions Three appendices provide brief biographies of some of the leading players along with the basic properties of each of the distributions. Actuaries, economists, market researchers, social scientists, and physicists interested in econophysics will find Statistical Size Distributions in Economics and Actuarial Sciences to be a truly one-of-a-kind addition to the professional literature.
Download or read book Artificial Intelligence in Cancer written by Smaranda Belciug and published by Academic Press. This book was released on 2020-06-18 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence in Cancer: Diagnostic to Tailored Treatment provides theoretical concepts and practical techniques of AI and its applications in cancer management, building a roadmap on how to use AI in cancer at different stages of healthcare. It discusses topics such as the impactful role of AI during diagnosis and how it can support clinicians to make better decisions, AI tools to help pathologists identify exact types of cancer, how AI supports tumor profiling and can assist surgeons, and the gains in precision for oncologists using AI tools. Additionally, it provides information on AI used for survival and remission/recurrence analysis. The book is a valuable source for bioinformaticians, cancer researchers, oncologists, clinicians and members of the biomedical field who want to understand the promising field of AI applications in cancer management. - Discusses over 20 real cancer examples, bringing state-of-the-art cancer cases in which AI was used to help the medical personnel - Presents over 100 diagrams, making it easier to comprehend AI's results on a specific problem through visual resources - Explains AI algorithms in a friendly manner, thus helping the reader implement or use them in a specific cancer case
Download or read book Data Science and Machine Learning written by Dirk P. Kroese and published by CRC Press. This book was released on 2019-11-20 with total page 538 pages. Available in PDF, EPUB and Kindle. Book excerpt: Focuses on mathematical understanding Presentation is self-contained, accessible, and comprehensive Full color throughout Extensive list of exercises and worked-out examples Many concrete algorithms with actual code
Download or read book The AI Book written by Ivana Bartoletti and published by John Wiley & Sons. This book was released on 2020-06-29 with total page 304 pages. Available in PDF, EPUB and Kindle. Book excerpt: Written by prominent thought leaders in the global fintech space, The AI Book aggregates diverse expertise into a single, informative volume and explains what artifical intelligence really means and how it can be used across financial services today. Key industry developments are explained in detail, and critical insights from cutting-edge practitioners offer first-hand information and lessons learned. Coverage includes: · Understanding the AI Portfolio: from machine learning to chatbots, to natural language processing (NLP); a deep dive into the Machine Intelligence Landscape; essentials on core technologies, rethinking enterprise, rethinking industries, rethinking humans; quantum computing and next-generation AI · AI experimentation and embedded usage, and the change in business model, value proposition, organisation, customer and co-worker experiences in today’s Financial Services Industry · The future state of financial services and capital markets – what’s next for the real-world implementation of AITech? · The innovating customer – users are not waiting for the financial services industry to work out how AI can re-shape their sector, profitability and competitiveness · Boardroom issues created and magnified by AI trends, including conduct, regulation & oversight in an algo-driven world, cybersecurity, diversity & inclusion, data privacy, the ‘unbundled corporation’ & the future of work, social responsibility, sustainability, and the new leadership imperatives · Ethical considerations of deploying Al solutions and why explainable Al is so important
Download or read book Machine Learning Risk Assessments in Criminal Justice Settings written by Richard Berk and published by Springer. This book was released on 2018-12-13 with total page 184 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book puts in one place and in accessible form Richard Berk’s most recent work on forecasts of re-offending by individuals already in criminal justice custody. Using machine learning statistical procedures trained on very large datasets, an explicit introduction of the relative costs of forecasting errors as the forecasts are constructed, and an emphasis on maximizing forecasting accuracy, the author shows how his decades of research on the topic improves forecasts of risk. Criminal justice risk forecasts anticipate the future behavior of specified individuals, rather than “predictive policing” for locations in time and space, which is a very different enterprise that uses different data different data analysis tools. The audience for this book includes graduate students and researchers in the social sciences, and data analysts in criminal justice agencies. Formal mathematics is used only as necessary or in concert with more intuitive explanations.
Download or read book Actuarial Theory for Dependent Risks written by Michel Denuit and published by John Wiley & Sons. This book was released on 2006-05-01 with total page 458 pages. Available in PDF, EPUB and Kindle. Book excerpt: The increasing complexity of insurance and reinsurance products has seen a growing interest amongst actuaries in the modelling of dependent risks. For efficient risk management, actuaries need to be able to answer fundamental questions such as: Is the correlation structure dangerous? And, if yes, to what extent? Therefore tools to quantify, compare, and model the strength of dependence between different risks are vital. Combining coverage of stochastic order and risk measure theories with the basics of risk management and stochastic dependence, this book provides an essential guide to managing modern financial risk. * Describes how to model risks in incomplete markets, emphasising insurance risks. * Explains how to measure and compare the danger of risks, model their interactions, and measure the strength of their association. * Examines the type of dependence induced by GLM-based credibility models, the bounds on functions of dependent risks, and probabilistic distances between actuarial models. * Detailed presentation of risk measures, stochastic orderings, copula models, dependence concepts and dependence orderings. * Includes numerous exercises allowing a cementing of the concepts by all levels of readers. * Solutions to tasks as well as further examples and exercises can be found on a supporting website. An invaluable reference for both academics and practitioners alike, Actuarial Theory for Dependent Risks will appeal to all those eager to master the up-to-date modelling tools for dependent risks. The inclusion of exercises and practical examples makes the book suitable for advanced courses on risk management in incomplete markets. Traders looking for practical advice on insurance markets will also find much of interest.