EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Approximations and Numerical Methods for the Solution of Maxwell s Equations

Download or read book Approximations and Numerical Methods for the Solution of Maxwell s Equations written by F. El Dabaghi and published by Oxford University Press, USA. This book was released on 1998 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book was written in response to the increasing interest in the high frequency numerical solution of Maxwell's equations. Research activity in this area has been stimulated by requirements for greater precision in radar cross-section calculations, particularly for geometries with lowobservability; however there are also a growing number of applications in bio-electromagnetism and electromagnetic compatibility. It is hoped that these proceedings will be of interest both to specialists in this area as well as to others simply looking for a guide to recent developments.

Book Finite Element Methods for Maxwell s Equations

Download or read book Finite Element Methods for Maxwell s Equations written by Peter Monk and published by Clarendon Press. This book was released on 2003-04-17 with total page 468 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since the middle of the last century, computing power has increased sufficiently that the direct numerical approximation of Maxwell's equations is now an increasingly important tool in science and engineering. Parallel to the increasing use of numerical methods in computational electromagnetism there has also been considerable progress in the mathematical understanding of the properties of Maxwell's equations relevant to numerical analysis. The aim of this book is to provide an up to date and sound theoretical foundation for finite element methods in computational electromagnetism. The emphasis is on finite element methods for scattering problems that involve the solution of Maxwell's equations on infinite domains. Suitable variational formulations are developed and justified mathematically. An error analysis of edge finite element methods that are particularly well suited to Maxwell's equations is the main focus of the book. The methods are justified for Lipschitz polyhedral domains that can cause strong singularities in the solution. The book finishes with a short introduction to inverse problems in electromagnetism.

Book Eddy Current Approximation of Maxwell Equations

Download or read book Eddy Current Approximation of Maxwell Equations written by Ana Alonso Rodriguez and published by Springer Science & Business Media. This book was released on 2010-11-22 with total page 355 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with the mathematical analysis and the numerical approximation of eddy current problems in the time-harmonic case. It takes into account all the most used formulations, placing the problem in a rigorous functional framework.

Book A Practical Guide to Pseudospectral Methods

Download or read book A Practical Guide to Pseudospectral Methods written by Bengt Fornberg and published by Cambridge University Press. This book was released on 1998-10-28 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explains how, when and why the pseudospectral approach works.

Book Introduction to Electromagnetic Waves with Maxwell s Equations

Download or read book Introduction to Electromagnetic Waves with Maxwell s Equations written by Ozgur Ergul and published by John Wiley & Sons. This book was released on 2021-10-11 with total page 596 pages. Available in PDF, EPUB and Kindle. Book excerpt: Discover an innovative and fresh approach to teaching classical electromagnetics at a foundational level Introduction to Electromagnetic Waves with Maxwell’s Equations delivers an accessible and practical approach to teaching the wellknown topics all electromagnetics instructors must include in their syllabus. Based on the author’s decades of experience teaching the subject, the book is carefully tuned to be relevant to an audience of engineering students who have already been exposed to the basic curricula of linear algebra and multivariate calculus. Forming the backbone of the book, Maxwell’s equations are developed step-by-step in consecutive chapters, while related electromagnetic phenomena are discussed simultaneously. The author presents accompanying mathematical tools alongside the material provided in the book to assist students with retention and comprehension. The book contains over 100 solved problems and examples with stepwise solutions offered alongside them. An accompanying website provides readers with additional problems and solutions. Readers will also benefit from the inclusion of: A thorough introduction to preliminary concepts in the field, including scalar and vector fields, cartesian coordinate systems, basic vector operations, orthogonal coordinate systems, and electrostatics, magnetostatics, and electromagnetics An exploration of Gauss’ Law, including integral forms, differential forms, and boundary conditions A discussion of Ampere’s Law, including integral and differential forms and Stoke’s Theorem An examination of Faraday’s Law, including integral and differential forms and the Lorentz Force Law Perfect for third-and fourth-year undergraduate students in electrical engineering, mechanical engineering, applied maths, physics, and computer science, Introduction to Electromagnetic Waves with Maxwell’s Equations will also earn a place in the libraries of graduate and postgraduate students in any STEM program with applications in electromagnetics.

Book Numerical Methods in Photonics

Download or read book Numerical Methods in Photonics written by Andrei V. Lavrinenko and published by CRC Press. This book was released on 2018-09-03 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: Simulation and modeling using numerical methods is one of the key instruments in any scientific work. In the field of photonics, a wide range of numerical methods are used for studying both fundamental optics and applications such as design, development, and optimization of photonic components. Modeling is key for developing improved photonic devices and reducing development time and cost. Choosing the appropriate computational method for a photonics modeling problem requires a clear understanding of the pros and cons of the available numerical methods. Numerical Methods in Photonics presents six of the most frequently used methods: FDTD, FDFD, 1+1D nonlinear propagation, modal method, Green’s function, and FEM. After an introductory chapter outlining the basics of Maxwell’s equations, the book includes self-contained chapters that focus on each of the methods. Each method is accompanied by a review of the mathematical principles in which it is based, along with sample scripts, illustrative examples of characteristic problem solving, and exercises. MATLAB® is used throughout the text. This book provides a solid basis to practice writing your own codes. The theoretical formulation is complemented by sets of exercises, which allow you to grasp the essence of the modeling tools.

Book Topics in Computational Wave Propagation

Download or read book Topics in Computational Wave Propagation written by Mark Ainsworth and published by Springer. This book was released on 2011-09-27 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: These ten detailed and authoritative survey articles on numerical methods for direct and inverse wave propagation problems are written by leading experts. Researchers and practitioners in computational wave propagation, from postgraduate level onwards, will find the breadth and depth of coverage of recent developments a valuable resource. The articles describe a wide range of topics on the application and analysis of methods for time and frequency domain PDE and boundary integral formulations of wave propagation problems. Electromagnetic, seismic and acoustic equations are considered. Recent developments in methods and analysis ranging from finite differences to hp-adaptive finite elements, including high-accuracy and fast methods are described with extensive references.

Book Numerical Approximations of Stochastic Maxwell Equations

Download or read book Numerical Approximations of Stochastic Maxwell Equations written by Chuchu Chen and published by Springer Nature. This book was released on 2024-01-04 with total page 293 pages. Available in PDF, EPUB and Kindle. Book excerpt: The stochastic Maxwell equations play an essential role in many fields, including fluctuational electrodynamics, statistical radiophysics, integrated circuits, and stochastic inverse problems. This book provides some recent advances in the investigation of numerical approximations of the stochastic Maxwell equations via structure-preserving algorithms. It presents an accessible overview of the construction and analysis of structure-preserving algorithms with an emphasis on the preservation of geometric structures, physical properties, and asymptotic behaviors of the stochastic Maxwell equations. A friendly introduction to the simulation of the stochastic Maxwell equations with some structure-preserving algorithms is provided using MATLAB for the reader’s convenience. The objects considered in this book are related to several fascinating mathematical fields: numerical analysis, stochastic analysis, (multi-)symplectic geometry, large deviations principle, ergodic theory, partial differential equation, probability theory, etc. This book will appeal to researchers who are interested in these topics.

Book Functional Analysis  Approximation Theory And Numerical Analysis

Download or read book Functional Analysis Approximation Theory And Numerical Analysis written by John Michael Rassias and published by World Scientific. This book was released on 1994-06-09 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book consists of papers written by outstanding mathematicians. It deals with both theoretical and applied aspects of the mathematical contributions of BANACH, ULAM, and OSTROWSKI, which broaden the horizons of Functional Analysis, Approximation Theory, and Numerical Analysis in accordance with contemporary mathematical standards.

Book Numerical Methods in Computational Electrodynamics

Download or read book Numerical Methods in Computational Electrodynamics written by Ursula van Rienen and published by Springer Science & Business Media. This book was released on 2001 with total page 404 pages. Available in PDF, EPUB and Kindle. Book excerpt: This interdisciplinary book deals with the solution of large linear systems as they typically arise in computational electrodynamics. It presents a collection of topics which are important for the solution of real life electromagnetic problems with numerical methods - covering all aspects ranging from numerical mathematics up to measurement techniques. Special highlights include a first detailed treatment of the Finite Integration Technique (FIT) in a book - in theory and applications, a documentation of most recent algorithms in use in the field of Krylov subspace methods in a unified style, a discussion on the interplay between simulation and measurement with many practical examples.

Book Handbook of Optoelectronic Device Modeling and Simulation

Download or read book Handbook of Optoelectronic Device Modeling and Simulation written by Joachim Piprek and published by CRC Press. This book was released on 2017-10-12 with total page 887 pages. Available in PDF, EPUB and Kindle. Book excerpt: Provides a comprehensive survey of fundamental concepts and methods for optoelectronic device modeling and simulation. Gives a broad overview of concepts with concise explanations illustrated by real results. Compares different levels of modeling, from simple analytical models to complex numerical models. Discusses practical methods of model validation. Includes an overview of numerical techniques.

Book Partial Differential Equations

Download or read book Partial Differential Equations written by Walter A. Strauss and published by John Wiley & Sons. This book was released on 2007-12-21 with total page 467 pages. Available in PDF, EPUB and Kindle. Book excerpt: Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.

Book Computational Electromagnetism

Download or read book Computational Electromagnetism written by Houssem Haddar and published by Springer. This book was released on 2015-07-20 with total page 249 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presenting topics that have not previously been contained in a single volume, this book offers an up-to-date review of computational methods in electromagnetism, with a focus on recent results in the numerical simulation of real-life electromagnetic problems and on theoretical results that are useful in devising and analyzing approximation algorithms. Based on four courses delivered in Cetraro in June 2014, the material covered includes the spatial discretization of Maxwell’s equations in a bounded domain, the numerical approximation of the eddy current model in harmonic regime, the time domain integral equation method (with an emphasis on the electric-field integral equation) and an overview of qualitative methods for inverse electromagnetic scattering problems. Assuming some knowledge of the variational formulation of PDEs and of finite element/boundary element methods, the book is suitable for PhD students and researchers interested in numerical approximation of partial differential equations and scientific computing.

Book Higher Order Numerical Methods for Transient Wave Equations

Download or read book Higher Order Numerical Methods for Transient Wave Equations written by Gary Cohen and published by Springer Science & Business Media. This book was released on 2001-11-06 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: "To my knowledge [this] is the first book to address specifically the use of high-order discretizations in the time domain to solve wave equations. [...] I recommend the book for its clear and cogent coverage of the material selected by its author." --Physics Today, March 2003

Book Numerical Methods for Conservation Laws

Download or read book Numerical Methods for Conservation Laws written by Jan S. Hesthaven and published by SIAM. This book was released on 2018-01-30 with total page 571 pages. Available in PDF, EPUB and Kindle. Book excerpt: Conservation laws are the mathematical expression of the principles of conservation and provide effective and accurate predictive models of our physical world. Although intense research activity during the last decades has led to substantial advances in the development of powerful computational methods for conservation laws, their solution remains a challenge and many questions are left open; thus it is an active and fruitful area of research. Numerical Methods for Conservation Laws: From Analysis to Algorithms offers the first comprehensive introduction to modern computational methods and their analysis for hyperbolic conservation laws, building on intense research activities for more than four decades of development; discusses classic results on monotone and finite difference/finite volume schemes, but emphasizes the successful development of high-order accurate methods for hyperbolic conservation laws; addresses modern concepts of TVD and entropy stability, strongly stable Runge-Kutta schemes, and limiter-based methods before discussing essentially nonoscillatory schemes, discontinuous Galerkin methods, and spectral methods; explores algorithmic aspects of these methods, emphasizing one- and two-dimensional problems and the development and analysis of an extensive range of methods; includes MATLAB software with which all main methods and computational results in the book can be reproduced; and demonstrates the performance of many methods on a set of benchmark problems to allow direct comparisons. Code and other supplemental material will be available online at publication.

Book The Nystrom Method in Electromagnetics

Download or read book The Nystrom Method in Electromagnetics written by Mei Song Tong and published by John Wiley & Sons. This book was released on 2020-06-29 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: A comprehensive, step-by-step reference to the Nyström Method for solving Electromagnetic problems using integral equations Computational electromagnetics studies the numerical methods or techniques that solve electromagnetic problems by computer programming. Currently, there are mainly three numerical methods for electromagnetic problems: the finite-difference time-domain (FDTD), finite element method (FEM), and integral equation methods (IEMs). In the IEMs, the method of moments (MoM) is the most widely used method, but much attention is being paid to the Nyström method as another IEM, because it possesses some unique merits which the MoM lacks. This book focuses on that method—providing information on everything that students and professionals working in the field need to know. Written by the top researchers in electromagnetics, this complete reference book is a consolidation of advances made in the use of the Nyström method for solving electromagnetic integral equations. It begins by introducing the fundamentals of the electromagnetic theory and computational electromagnetics, before proceeding to illustrate the advantages unique to the Nyström method through rigorous worked out examples and equations. Key topics include quadrature rules, singularity treatment techniques, applications to conducting and penetrable media, multiphysics electromagnetic problems, time-domain integral equations, inverse scattering problems and incorporation with multilevel fast multiple algorithm. Systematically introduces the fundamental principles, equations, and advantages of the Nyström method for solving electromagnetic problems Features the unique benefits of using the Nyström method through numerical comparisons with other numerical and analytical methods Covers a broad range of application examples that will point the way for future research The Nystrom Method in Electromagnetics is ideal for graduate students, senior undergraduates, and researchers studying engineering electromagnetics, computational methods, and applied mathematics. Practicing engineers and other industry professionals working in engineering electromagnetics and engineering mathematics will also find it to be incredibly helpful.

Book The Maxwellians

Download or read book The Maxwellians written by Bruce J. Hunt and published by Cornell University Press. This book was released on 1994 with total page 284 pages. Available in PDF, EPUB and Kindle. Book excerpt: James Clerk Maxwell published the Treatise on Electricity and Magnetism in 1873. At his death, six years later, his theory of the electromagnetic field was neither well understood nor widely accepted. By the mid-1890s, however, it was regarded as one of the most fundamental and fruitful of all physical theories. Bruce J. Hunt examines the joint work of a group of young British physicists--G. F. FitzGerald, Oliver Heaviside, and Oliver Lodge--along with a key German contributor, Heinrich Hertz. It was these "Maxwellians" who transformed the fertile but half-finished ideas presented in the Treatise into the concise and powerful system now known as "Maxwell's theory."