EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Normal Approximation by Stein   s Method

Download or read book Normal Approximation by Stein s Method written by Louis H.Y. Chen and published by Springer Science & Business Media. This book was released on 2010-10-13 with total page 411 pages. Available in PDF, EPUB and Kindle. Book excerpt: Since its introduction in 1972, Stein’s method has offered a completely novel way of evaluating the quality of normal approximations. Through its characterizing equation approach, it is able to provide approximation error bounds in a wide variety of situations, even in the presence of complicated dependence. Use of the method thus opens the door to the analysis of random phenomena arising in areas including statistics, physics, and molecular biology. Though Stein's method for normal approximation is now mature, the literature has so far lacked a complete self contained treatment. This volume contains thorough coverage of the method’s fundamentals, includes a large number of recent developments in both theory and applications, and will help accelerate the appreciation, understanding, and use of Stein's method by providing the reader with the tools needed to apply it in new situations. It addresses researchers as well as graduate students in Probability, Statistics and Combinatorics.

Book Approximation Methods in Probability Theory

Download or read book Approximation Methods in Probability Theory written by Vydas Čekanavičius and published by Springer. This book was released on 2016-06-16 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a wide range of well-known and less common methods used for estimating the accuracy of probabilistic approximations, including the Esseen type inversion formulas, the Stein method as well as the methods of convolutions and triangle function. Emphasising the correct usage of the methods presented, each step required for the proofs is examined in detail. As a result, this textbook provides valuable tools for proving approximation theorems. While Approximation Methods in Probability Theory will appeal to everyone interested in limit theorems of probability theory, the book is particularly aimed at graduate students who have completed a standard intermediate course in probability theory. Furthermore, experienced researchers wanting to enlarge their toolkit will also find this book useful.

Book Approximation Theory and Methods

Download or read book Approximation Theory and Methods written by M. J. D. Powell and published by Cambridge University Press. This book was released on 1981-03-31 with total page 356 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most functions that occur in mathematics cannot be used directly in computer calculations. Instead they are approximated by manageable functions such as polynomials and piecewise polynomials. The general theory of the subject and its application to polynomial approximation are classical, but piecewise polynomials have become far more useful during the last twenty years. Thus many important theoretical properties have been found recently and many new techniques for the automatic calculation of approximations to prescribed accuracy have been developed. This book gives a thorough and coherent introduction to the theory that is the basis of current approximation methods. Professor Powell describes and analyses the main techniques of calculation supplying sufficient motivation throughout the book to make it accessible to scientists and engineers who require approximation methods for practical needs. Because the book is based on a course of lectures to third-year undergraduates in mathematics at Cambridge University, sufficient attention is given to theory to make it highly suitable as a mathematical textbook at undergraduate or postgraduate level.

Book Stochastic Approximation Methods for Constrained and Unconstrained Systems

Download or read book Stochastic Approximation Methods for Constrained and Unconstrained Systems written by H.J. Kushner and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 273 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book deals with a powerful and convenient approach to a great variety of types of problems of the recursive monte-carlo or stochastic approximation type. Such recu- sive algorithms occur frequently in stochastic and adaptive control and optimization theory and in statistical esti- tion theory. Typically, a sequence {X } of estimates of a n parameter is obtained by means of some recursive statistical th st procedure. The n estimate is some function of the n_l estimate and of some new observational data, and the aim is to study the convergence, rate of convergence, and the pa- metric dependence and other qualitative properties of the - gorithms. In this sense, the theory is a statistical version of recursive numerical analysis. The approach taken involves the use of relatively simple compactness methods. Most standard results for Kiefer-Wolfowitz and Robbins-Monro like methods are extended considerably. Constrained and unconstrained problems are treated, as is the rate of convergence problem. While the basic method is rather simple, it can be elaborated to allow a broad and deep coverage of stochastic approximation like problems. The approach, relating algorithm behavior to qualitative properties of deterministic or stochastic differ ential equations, has advantages in algorithm conceptualiza tion and design. It is often possible to obtain an intuitive understanding of algorithm behavior or qualitative dependence upon parameters, etc., without getting involved in a great deal of deta~l.

Book Analysis and Approximation of Rare Events

Download or read book Analysis and Approximation of Rare Events written by Amarjit Budhiraja and published by Springer. This book was released on 2019-08-10 with total page 577 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents broadly applicable methods for the large deviation and moderate deviation analysis of discrete and continuous time stochastic systems. A feature of the book is the systematic use of variational representations for quantities of interest such as normalized logarithms of probabilities and expected values. By characterizing a large deviation principle in terms of Laplace asymptotics, one converts the proof of large deviation limits into the convergence of variational representations. These features are illustrated though their application to a broad range of discrete and continuous time models, including stochastic partial differential equations, processes with discontinuous statistics, occupancy models, and many others. The tools used in the large deviation analysis also turn out to be useful in understanding Monte Carlo schemes for the numerical approximation of the same probabilities and expected values. This connection is illustrated through the design and analysis of importance sampling and splitting schemes for rare event estimation. The book assumes a solid background in weak convergence of probability measures and stochastic analysis, and is suitable for advanced graduate students, postdocs and researchers.

Book Probability Methods for Approximations in Stochastic Control and for Elliptic Equations

Download or read book Probability Methods for Approximations in Stochastic Control and for Elliptic Equations written by Kushner and published by Academic Press. This book was released on 1977-04-14 with total page 263 pages. Available in PDF, EPUB and Kindle. Book excerpt: Probability Methods for Approximations in Stochastic Control and for Elliptic Equations

Book Approximation Theory and Approximation Practice  Extended Edition

Download or read book Approximation Theory and Approximation Practice Extended Edition written by Lloyd N. Trefethen and published by SIAM. This book was released on 2019-01-01 with total page 377 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is a textbook on classical polynomial and rational approximation theory for the twenty-first century. Aimed at advanced undergraduates and graduate students across all of applied mathematics, it uses MATLAB to teach the field’s most important ideas and results. Approximation Theory and Approximation Practice, Extended Edition differs fundamentally from other works on approximation theory in a number of ways: its emphasis is on topics close to numerical algorithms; concepts are illustrated with Chebfun; and each chapter is a PUBLISHable MATLAB M-file, available online. The book centers on theorems and methods for analytic functions, which appear so often in applications, rather than on functions at the edge of discontinuity with their seductive theoretical challenges. Original sources are cited rather than textbooks, and each item in the bibliography is accompanied by an editorial comment. In addition, each chapter has a collection of exercises, which span a wide range from mathematical theory to Chebfun-based numerical experimentation. This textbook is appropriate for advanced undergraduate or graduate students who have an understanding of numerical analysis and complex analysis. It is also appropriate for seasoned mathematicians who use MATLAB.

Book Stochastic Approximation

Download or read book Stochastic Approximation written by M. T. Wasan and published by Cambridge University Press. This book was released on 2004-06-03 with total page 220 pages. Available in PDF, EPUB and Kindle. Book excerpt: A rigorous mathematical treatment of the technique for studying the properties of an experimental situation.

Book Advanced Mean Field Methods

Download or read book Advanced Mean Field Methods written by Manfred Opper and published by MIT Press. This book was released on 2001 with total page 300 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the theoretical foundations of advanced mean field methods, explores the relation between the different approaches, examines the quality of the approximation obtained, and demonstrates their application to various areas of probabilistic modeling. A major problem in modern probabilistic modeling is the huge computational complexity involved in typical calculations with multivariate probability distributions when the number of random variables is large. Because exact computations are infeasible in such cases and Monte Carlo sampling techniques may reach their limits, there is a need for methods that allow for efficient approximate computations. One of the simplest approximations is based on the mean field method, which has a long history in statistical physics. The method is widely used, particularly in the growing field of graphical models. Researchers from disciplines such as statistical physics, computer science, and mathematical statistics are studying ways to improve this and related methods and are exploring novel application areas. Leading approaches include the variational approach, which goes beyond factorizable distributions to achieve systematic improvements; the TAP (Thouless-Anderson-Palmer) approach, which incorporates correlations by including effective reaction terms in the mean field theory; and the more general methods of graphical models. Bringing together ideas and techniques from these diverse disciplines, this book covers the theoretical foundations of advanced mean field methods, explores the relation between the different approaches, examines the quality of the approximation obtained, and demonstrates their application to various areas of probabilistic modeling.

Book Analytical and Computational Methods in Probability Theory

Download or read book Analytical and Computational Methods in Probability Theory written by Vladimir V. Rykov and published by Springer. This book was released on 2017-12-21 with total page 551 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the First International Conference on Analytical and Computational Methods in Probability Theory and its Applications, ACMPT 2017, held in Moscow, Russia, in October 2017. The 42 full papers presented were carefully reviewed and selected from 173 submissions. The conference program consisted of four main themes associated with significant contributions made by A.D.Soloviev. These are: Analytical methods in probability theory, Computational methods in probability theory, Asymptotical methods in probability theory, the history of mathematics.

Book Fundamentals of Approximation Theory

Download or read book Fundamentals of Approximation Theory written by Hrushikesh Narhar Mhaskar and published by CRC Press. This book was released on 2000 with total page 580 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of approximation theory has become so vast that it intersects with every other branch of analysis and plays an increasingly important role in applications in the applied sciences and engineering. Fundamentals of Approximation Theory presents a systematic, in-depth treatment of some basic topics in approximation theory designed to emphasize the rich connections of the subject with other areas of study. With an approach that moves smoothly from the very concrete to more and more abstract levels, this text provides an outstanding blend of classical and abstract topics. The first five chapters present the core of information that readers need to begin research in this domain. The final three chapters the authors devote to special topics-splined functions, orthogonal polynomials, and best approximation in normed linear spaces- that illustrate how the core material applies in other contexts and expose readers to the use of complex analytic methods in approximation theory. Each chapter contains problems of varying difficulty, including some drawn from contemporary research. Perfect for an introductory graduate-level class, Fundamentals of Approximation Theory also contains enough advanced material to serve more specialized courses at the doctoral level and to interest scientists and engineers.

Book Asymptotic Approximations for Probability Integrals

Download or read book Asymptotic Approximations for Probability Integrals written by Karl W. Breitung and published by Springer. This book was released on 2006-11-14 with total page 157 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives a self-contained introduction to the subject of asymptotic approximation for multivariate integrals for both mathematicians and applied scientists. A collection of results of the Laplace methods is given. Such methods are useful for example in reliability, statistics, theoretical physics and information theory. An important special case is the approximation of multidimensional normal integrals. Here the relation between the differential geometry of the boundary of the integration domain and the asymptotic probability content is derived. One of the most important applications of these methods is in structural reliability. Engineers working in this field will find here a complete outline of asymptotic approximation methods for failure probability integrals.

Book Approximation Theory XVI

Download or read book Approximation Theory XVI written by Gregory E. Fasshauer and published by Springer Nature. This book was released on 2021-01-04 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: These proceedings are based on the international conference Approximation Theory XVI held on May 19–22, 2019 in Nashville, Tennessee. The conference was the sixteenth in a series of meetings in Approximation Theory held at various locations in the United States. Over 130 mathematicians from 20 countries attended. The book contains two longer survey papers on nonstationary subdivision and Prony’s method, along with 11 research papers on a variety of topics in approximation theory, including Balian-Low theorems, butterfly spline interpolation, cubature rules, Hankel and Toeplitz matrices, phase retrieval, positive definite kernels, quasi-interpolation operators, stochastic collocation, the gradient conjecture, time-variant systems, and trivariate finite elements. The book should be of interest to mathematicians, engineers, and computer scientists working in approximation theory, computer-aided geometric design, numerical analysis, and related approximation areas.

Book Probability Theory for Statistical Methods

Download or read book Probability Theory for Statistical Methods written by and published by CUP Archive. This book was released on with total page 252 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book A Course in Approximation Theory

Download or read book A Course in Approximation Theory written by Elliott Ward Cheney and published by American Mathematical Soc.. This book was released on 2009-01-13 with total page 379 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook is designed for graduate students in mathematics, physics, engineering, and computer science. Its purpose is to guide the reader in exploring contemporary approximation theory. The emphasis is on multi-variable approximation theory, i.e., the approximation of functions in several variables, as opposed to the classical theory of functions in one variable. Most of the topics in the book, heretofore accessible only through research papers, are treated here from the basics to the currently active research, often motivated by practical problems arising in diverse applications such as science, engineering, geophysics, and business and economics. Among these topics are projections, interpolation paradigms, positive definite functions, interpolation theorems of Schoenberg and Micchelli, tomography, artificial neural networks, wavelets, thin-plate splines, box splines, ridge functions, and convolutions. An important and valuable feature of the book is the bibliography of almost 600 items directing the reader to important books and research papers. There are 438 problems and exercises scattered through the book allowing the student reader to get a better understanding of the subject.

Book Poisson Approximation

Download or read book Poisson Approximation written by A. D. Barbour and published by . This book was released on 1992 with total page 298 pages. Available in PDF, EPUB and Kindle. Book excerpt: The Poisson "law of small numbers" is a central principle in modern theories of reliability, insurance, and the statistics of extremes. It also has ramifications in apparently unrelated areas, such as the description of algebraic and combinatorial structures, and the distribution of prime numbers. Yet despite its importance, the law of small numbers is only an approximation. In 1975, however, a new technique was introduced, the Stein-Chen method, which makes it possible to estimate the accuracy of the approximation in a wide range of situations. This book provides an introduction to the method, and a varied selection of examples of its application, emphasizing the flexibility of the technique when combined with a judicious choice of coupling. It also contains more advanced material, in particular on compound Poisson and Poisson process approximation, where the reader is brought to the boundaries of current knowledge. The study will be of special interest to postgraduate students and researchers in applied probability as well as computer scientists.

Book Probability and Measure

    Book Details:
  • Author : Patrick Billingsley
  • Publisher : John Wiley & Sons
  • Release : 2017
  • ISBN : 9788126517718
  • Pages : 612 pages

Download or read book Probability and Measure written by Patrick Billingsley and published by John Wiley & Sons. This book was released on 2017 with total page 612 pages. Available in PDF, EPUB and Kindle. Book excerpt: Now in its new third edition, Probability and Measure offers advanced students, scientists, and engineers an integrated introduction to measure theory and probability. Retaining the unique approach of the previous editions, this text interweaves material on probability and measure, so that probability problems generate an interest in measure theory and measure theory is then developed and applied to probability. Probability and Measure provides thorough coverage of probability, measure, integration, random variables and expected values, convergence of distributions, derivatives and conditional probability, and stochastic processes. The Third Edition features an improved treatment of Brownian motion and the replacement of queuing theory with ergodic theory.· Probability· Measure· Integration· Random Variables and Expected Values· Convergence of Distributions· Derivatives and Conditional Probability· Stochastic Processes