EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Numerical Solution of Boundary Value Problems for Ordinary Differential Equations

Download or read book Numerical Solution of Boundary Value Problems for Ordinary Differential Equations written by Uri M. Ascher and published by SIAM. This book was released on 1994-12-01 with total page 620 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the most comprehensive, up-to-date account of the popular numerical methods for solving boundary value problems in ordinary differential equations. It aims at a thorough understanding of the field by giving an in-depth analysis of the numerical methods by using decoupling principles. Numerous exercises and real-world examples are used throughout to demonstrate the methods and the theory. Although first published in 1988, this republication remains the most comprehensive theoretical coverage of the subject matter, not available elsewhere in one volume. Many problems, arising in a wide variety of application areas, give rise to mathematical models which form boundary value problems for ordinary differential equations. These problems rarely have a closed form solution, and computer simulation is typically used to obtain their approximate solution. This book discusses methods to carry out such computer simulations in a robust, efficient, and reliable manner.

Book Analytical Solution Methods for Boundary Value Problems

Download or read book Analytical Solution Methods for Boundary Value Problems written by A.S. Yakimov and published by Academic Press. This book was released on 2016-08-13 with total page 202 pages. Available in PDF, EPUB and Kindle. Book excerpt: Analytical Solution Methods for Boundary Value Problems is an extensively revised, new English language edition of the original 2011 Russian language work, which provides deep analysis methods and exact solutions for mathematical physicists seeking to model germane linear and nonlinear boundary problems. Current analytical solutions of equations within mathematical physics fail completely to meet boundary conditions of the second and third kind, and are wholly obtained by the defunct theory of series. These solutions are also obtained for linear partial differential equations of the second order. They do not apply to solutions of partial differential equations of the first order and they are incapable of solving nonlinear boundary value problems. Analytical Solution Methods for Boundary Value Problems attempts to resolve this issue, using quasi-linearization methods, operational calculus and spatial variable splitting to identify the exact and approximate analytical solutions of three-dimensional non-linear partial differential equations of the first and second order. The work does so uniquely using all analytical formulas for solving equations of mathematical physics without using the theory of series. Within this work, pertinent solutions of linear and nonlinear boundary problems are stated. On the basis of quasi-linearization, operational calculation and splitting on spatial variables, the exact and approached analytical solutions of the equations are obtained in private derivatives of the first and second order. Conditions of unequivocal resolvability of a nonlinear boundary problem are found and the estimation of speed of convergence of iterative process is given. On an example of trial functions results of comparison of the analytical solution are given which have been obtained on suggested mathematical technology, with the exact solution of boundary problems and with the numerical solutions on well-known methods. Discusses the theory and analytical methods for many differential equations appropriate for applied and computational mechanics researchers Addresses pertinent boundary problems in mathematical physics achieved without using the theory of series Includes results that can be used to address nonlinear equations in heat conductivity for the solution of conjugate heat transfer problems and the equations of telegraph and nonlinear transport equation Covers select method solutions for applied mathematicians interested in transport equations methods and thermal protection studies Features extensive revisions from the Russian original, with 115+ new pages of new textual content

Book Approximate Solution of Initial Value Problems for Ordinary Differential Equations by Boundary Value Techniques

Download or read book Approximate Solution of Initial Value Problems for Ordinary Differential Equations by Boundary Value Techniques written by Donald Greenspan and published by . This book was released on 1967 with total page 27 pages. Available in PDF, EPUB and Kindle. Book excerpt: Initial value problems are studied numerically by means of two distinctly different types of boundary value techniques. The problems treated are those for which either asymptotic estimates or results about the periodicity of solutions are available. Nontrivial examples which contain singularities and/or nonlinearities are discussed. Also, an example is provided for which initial value techniques diverge while boundary value techniques yield accurate approximations. (Author).

Book Generalized Inverse Operators

Download or read book Generalized Inverse Operators written by Alexander Andreevych Boichuk and published by Walter de Gruyter GmbH & Co KG. This book was released on 2016-08-22 with total page 314 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is devoted to the foundations of the theory of boundary-value problems for various classes of systems of differential-operator equations whose linear part is represented by Fredholm operators of the general form. A common point of view on numerous classes of problems that were traditionally studied independently of each other enables us to study, in a natural way, the theory of these problems, to supplement and improve the existing results, and in certain cases, study some of these problems for the first time. With the help of the technique of generalized inverse operators, the Vishik– Lyusternik method, and iterative methods, we perform a detailed investigation of the problems of existence, bifurcations, and branching of the solutions of linear and nonlinear boundary-value problems for various classes of differential-operator systems and propose new procedures for their construction. For more than 11 years that have passed since the appearance of the first edition of the monograph, numerous new publications of the authors in this direction have appeared. In this connection, it became necessary to make some additions and corrections to the previous extensively cited edition, which is still of signifi cant interest for the researchers. For researchers, teachers, post-graduate students, and students of physical and mathematical departments of universities. Contents: Preliminary Information Generalized Inverse Operators in Banach Spaces Pseudoinverse Operators in Hilbert Spaces Boundary-Value Problems for Operator Equations Boundary-Value Problems for Systems of Ordinary Differential Equations Impulsive Boundary-Value Problems for Systems of Ordinary Differential Equations Solutions of Differential and Difference Systems Bounded on the Entire Real Axis

Book Approximate Solution of Certain Boundary Value Problems

Download or read book Approximate Solution of Certain Boundary Value Problems written by Spencer Macy and published by . This book was released on 1947 with total page 80 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book A First Course in Integral Equations

Download or read book A First Course in Integral Equations written by Abdul-Majid Wazwaz and published by World Scientific. This book was released on 1997 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents the subject of integral equations in an accessible manner for a variety of applications. Emphasis is placed on understanding the subject while avoiding the abstract and compact theorems. A distinctive feature of the book is that it introduces the recent powerful and reliable developments in this field, which are not covered in traditional texts. The newly developed decomposition method, the series solution method and the direct computation method are thoroughly implemented, which allows the topic to be far more accessible. The book also includes some of the traditional techniques for comparison.Using the newly developed methods, the author successfully handles Fredholm and Volterra integral equations, singular integral equations, integro-differential equations and nonlinear integral equations, with promising results for linear and nonlinear models. Many examples are given to introduce the material in a clear and thorough fashion. In addition, many exercises are provided to build confidence, ease and skill in using the new methods.This book may be used as a text for advanced undergraduates and graduate students in mathematics and scientific areas, and as a work of reference for research study of differential equations and numerical analysis.

Book Approximation of Elliptic Boundary value Problems

Download or read book Approximation of Elliptic Boundary value Problems written by Jean Pierre Aubin and published by . This book was released on 1972 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: Mathematically self-contained, this text for advanced undergraduates and graduate students combines two important methods -- the finite element method and the variational method -- into the framework of functional analysis. It does so in order to explain potential applications to approximation of nonhomogeneous boundary-value problems for elliptic operators. 1980 edition.

Book Approximate Solution of Boundary Value Problems

Download or read book Approximate Solution of Boundary Value Problems written by Walter George Dyer and published by . This book was released on 1952 with total page 218 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Numerical Approximation Methods for Elliptic Boundary Value Problems

Download or read book Numerical Approximation Methods for Elliptic Boundary Value Problems written by Olaf Steinbach and published by Springer Science & Business Media. This book was released on 2007-12-22 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a unified theory of the Finite Element Method and the Boundary Element Method for a numerical solution of second order elliptic boundary value problems. This includes the solvability, stability, and error analysis as well as efficient methods to solve the resulting linear systems. Applications are the potential equation, the system of linear elastostatics and the Stokes system. While there are textbooks on the finite element method, this is one of the first books on Theory of Boundary Element Methods. It is suitable for self study and exercises are included.

Book The Hypercircle in Mathematical Physics

Download or read book The Hypercircle in Mathematical Physics written by J. L. Synge and published by Cambridge University Press. This book was released on 2012-03-22 with total page 439 pages. Available in PDF, EPUB and Kindle. Book excerpt: This 1957 book was written to help physicists and engineers solve partial differential equations subject to boundary conditions. The complexities of calculation are illuminated throughout by simple, intuitive geometrical pictures. This book will be of value to anyone with an interest in solutions to boundary value problems in mathematical physics.

Book Numerical Solution Of Ordinary And Partial Differential Equations  The  3rd Edition

Download or read book Numerical Solution Of Ordinary And Partial Differential Equations The 3rd Edition written by Granville Sewell and published by World Scientific. This book was released on 2014-12-16 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents methods for the computational solution of differential equations, both ordinary and partial, time-dependent and steady-state. Finite difference methods are introduced and analyzed in the first four chapters, and finite element methods are studied in chapter five. A very general-purpose and widely-used finite element program, PDE2D, which implements many of the methods studied in the earlier chapters, is presented and documented in Appendix A.The book contains the relevant theory and error analysis for most of the methods studied, but also emphasizes the practical aspects involved in implementing the methods. Students using this book will actually see and write programs (FORTRAN or MATLAB) for solving ordinary and partial differential equations, using both finite differences and finite elements. In addition, they will be able to solve very difficult partial differential equations using the software PDE2D, presented in Appendix A. PDE2D solves very general steady-state, time-dependent and eigenvalue PDE systems, in 1D intervals, general 2D regions, and a wide range of simple 3D regions.The Windows version of PDE2D comes free with every purchase of this book. More information at www.pde2d.com/contact.

Book Numerical analytic Methods in the Theory of Boundary value Problems

Download or read book Numerical analytic Methods in the Theory of Boundary value Problems written by Nikola? Iosifovich Ronto and published by World Scientific. This book was released on 2000 with total page 470 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book contains the main results of the authors' investigations on the development and application of numerical-analytic methods for ordinary nonlinear boundary value problems (BVPs). The methods under consideration provide an opportunity to solve the two important problems of the BVP theory ? namely, to establish existence theorems and to build approximation solutions. They can be used to investigate a wide variety of BVPs.The Appendix, written in collaboration with S I Trofimchuk, discusses the connection of the new method with the classical Cesari, Cesari-Hale and Lyapunov-Schmidt methods.

Book Approximate Solutions of Some Boundary Value Problems by Using Operational Matrices of Bernstein Polynomials

Download or read book Approximate Solutions of Some Boundary Value Problems by Using Operational Matrices of Bernstein Polynomials written by Kamal Shah and published by . This book was released on 2019 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this chapter, we develop an efficient numerical scheme for the solution of boundary value problems of fractional order differential equations as well as their coupled systems by using Bernstein polynomials. On using the mentioned polynomial, we construct operational matrices for both fractional order derivatives and integrations. Also we construct a new matrix for the boundary condition. Based on the suggested method, we convert the considered problem to algebraic equation, which can be easily solved by using Matlab. In the last section, numerical examples are provided to illustrate our main results.

Book Spline Solutions of Higher Order Boundary Value Problems

Download or read book Spline Solutions of Higher Order Boundary Value Problems written by Parcha Kalyani and published by GRIN Verlag. This book was released on 2020-06-09 with total page 122 pages. Available in PDF, EPUB and Kindle. Book excerpt: Doctoral Thesis / Dissertation from the year 2014 in the subject Mathematics - Applied Mathematics, , language: English, abstract: Some of the problems of real world phenomena can be described by differential equations involving the ordinary or partial derivatives with some initial or boundary conditions. To interpret the physical behavior of the problem it is necessary to know the solution of the differential equation. Unfortunately, it is not possible to solve some of the differential equations whether they are ordinary or partial with initial or boundary conditions through the analytical methods. When, we fail to find the solution of ordinary differential equation or partial differential equation with initial or boundary conditions through the analytical methods, one can obtain the numerical solution of such problems through the numerical methods up to the desired degree of accuracy. Of course, these numerical methods can also be applied to find the numerical solution of a differential equation which can be solved analytically. Several problems in natural sciences, social sciences, medicine, business management, engineering, particle dynamics, fluid mechanics, elasticity, heat transfer, chemistry, economics, anthropology and finance can be transformed into boundary value problems using mathematical modeling. A few problems in various fields of science and engineering yield linear and nonlinear boundary value problems of second order such as heat equation in thermal studies, wave equation in communication etc. Fifth-order boundary value problems generally arise in mathematical modeling of viscoelastic flows. The dynamo action in some stars may be modeled by sixth-order boundary-value problems. The narrow convecting layers bounded by stable layers which are believed to surround A-type stars may be modeled by sixth-order boundary value problems which arise in astrophysics. The seventh order boundary value problems generally arise in modeling induction motors with two rotor circuits. Various phenomena such as convection, flow in wind tunnels, lee waves, eddies, etc. can also be modeled by higher order boundary value problems.

Book Boundary Value Problems for Transport Equations

Download or read book Boundary Value Problems for Transport Equations written by Valeri Agoshkov and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the modern theory of boundary value problems the following ap proach to investigation is agreed upon (we call it the functional approach): some functional spaces are chosen; the statements of boundary value prob the basis of these spaces; and the solvability of lems are formulated on the problems, properties of solutions, and their dependence on the original data of the problems are analyzed. These stages are put on the basis of the correct statement of different problems of mathematical physics (or of the definition of ill-posed problems). For example, if the solvability of a prob lem in the functional spaces chosen cannot be established then, probably, the reason is in their unsatisfactory choice. Then the analysis should be repeated employing other functional spaces. Elliptical problems can serve as an example of classical problems which are analyzed by this approach. Their investigations brought a number of new notions and results in the theory of Sobolev spaces W;(D) which, in turn, enabled us to create a sufficiently complete theory of solvability of elliptical equations. Nowadays the mathematical theory of radiative transfer problems and kinetic equations is an extensive area of modern mathematical physics. It has various applications in astrophysics, the theory of nuclear reactors, geophysics, the theory of chemical processes, semiconductor theory, fluid mechanics, etc. [25,29,31,39,40, 47, 52, 78, 83, 94, 98, 120, 124, 125, 135, 146].