EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Approximate Partially Reduced SQP Approaches for Aerodynamic Shape Optimization Problems

Download or read book Approximate Partially Reduced SQP Approaches for Aerodynamic Shape Optimization Problems written by Ilia Gherman and published by . This book was released on 2008 with total page 160 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this thesis, a new optimization method is developed which is especially efficient in aerodynamical shape optimization. In dieser Dissertation wird eine neue Optimierungsmethode vorgestellt, die effizient bei der aerodynamischen Formoptimierung eingesetzt werden kann.

Book Constrained Optimization and Optimal Control for Partial Differential Equations

Download or read book Constrained Optimization and Optimal Control for Partial Differential Equations written by Günter Leugering and published by Springer Science & Business Media. This book was released on 2012-01-03 with total page 622 pages. Available in PDF, EPUB and Kindle. Book excerpt: This special volume focuses on optimization and control of processes governed by partial differential equations. The contributors are mostly participants of the DFG-priority program 1253: Optimization with PDE-constraints which is active since 2006. The book is organized in sections which cover almost the entire spectrum of modern research in this emerging field. Indeed, even though the field of optimal control and optimization for PDE-constrained problems has undergone a dramatic increase of interest during the last four decades, a full theory for nonlinear problems is still lacking. The contributions of this volume, some of which have the character of survey articles, therefore, aim at creating and developing further new ideas for optimization, control and corresponding numerical simulations of systems of possibly coupled nonlinear partial differential equations. The research conducted within this unique network of groups in more than fifteen German universities focuses on novel methods of optimization, control and identification for problems in infinite-dimensional spaces, shape and topology problems, model reduction and adaptivity, discretization concepts and important applications. Besides the theoretical interest, the most prominent question is about the effectiveness of model-based numerical optimization methods for PDEs versus a black-box approach that uses existing codes, often heuristic-based, for optimization.

Book Computational Optimization of Systems Governed by Partial Differential Equations

Download or read book Computational Optimization of Systems Governed by Partial Differential Equations written by Alfio Borzi and published by SIAM. This book was released on 2012-01-26 with total page 295 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a bridge between continuous optimization and PDE modelling and focuses on the numerical solution of the corresponding problems. Intended for graduate students in PDE-constrained optimization, it is also suitable as an introduction for researchers in scientific computing or optimization.

Book MEGADESIGN and MegaOpt   German Initiatives for Aerodynamic Simulation and Optimization in Aircraft Design

Download or read book MEGADESIGN and MegaOpt German Initiatives for Aerodynamic Simulation and Optimization in Aircraft Design written by Norbert Kroll and published by Springer Science & Business Media. This book was released on 2009-11-18 with total page 311 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume contains results of the German CFD initiative MEGADESIGN which combines CFD development activities from DLR, universities and aircraft industry. Based on the DLR flow solvers FLOWer and TAU the main objectives of the four-years project is to ensure the prediction accuracy with a guaranteed error bandwidth for certain aircraft configurations at design conditions, to reduce the simulation turn-around time for large-scale applications significantly, to improve the reliability of the flow solvers for full aircraft configurations in the complete flight regime, to extend the flow solvers to allow for multidisciplinary simulations and to establish numerical shape optimization as a vital tool within the aircraft design process. This volume highlights recent improvements and enhancements of the flow solvers as well as new developments with respect to aerodynamic and multidisciplinary shape optimization. Improved numerical simulation capabilities are demonstrated by several industrial applications.

Book Optimization and Computational Fluid Dynamics

Download or read book Optimization and Computational Fluid Dynamics written by Dominique Thévenin and published by Springer Science & Business Media. This book was released on 2008-01-08 with total page 301 pages. Available in PDF, EPUB and Kindle. Book excerpt: The numerical optimization of practical applications has been an issue of major importance for the last 10 years. It allows us to explore reliable non-trivial configurations, differing widely from all known solutions. The purpose of this book is to introduce the state-of-the-art concerning this issue and many complementary applications are presented.

Book Approximate Hessian for Accelerated Convergence of Aerodynamic Shape Optimization Problems in an Adjoint based Framework

Download or read book Approximate Hessian for Accelerated Convergence of Aerodynamic Shape Optimization Problems in an Adjoint based Framework written by Doug Shi-Dong and published by . This book was released on 2018 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: "An approximation of the Hessian matrix is developed and used to accelerate the convergence of an adjoint-based aerodynamic shape optimization framework. Exact analytical formulations of the direct-direct, adjoint-direct, adjoint-adjoint, and direct-adjoint Hessian approaches are presented and the equivalence between the adjoint-adjoint and direct-adjoint formulations is demonstrated. An approximation of the Hessian is obtained from the analytical formulation by partially solving first-order sensitivities to reduce computational time, while neglecting second-order sensitivities to ease implementation. Error bounds on the resulting approximation are presented for the first-order sensitivities through perturbation analysis and eigenvalue analysis. The proposed method is first assessed using an inverse design pressure problem for a quasi-one-dimensional Euler flow. Additionally, three-dimensional inviscid transonic test cases are used to demonstrate the effectiveness of the method.Eigenvalue analysis of the Hessian for various test cases will seek to explain the resulting acceleration." --

Book Management and Minimisation of Uncertainties and Errors in Numerical Aerodynamics

Download or read book Management and Minimisation of Uncertainties and Errors in Numerical Aerodynamics written by Bernhard Eisfeld and published by Springer Science & Business Media. This book was released on 2013-02-11 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume reports results from the German research initiative MUNA (Management and Minimization of Errors and Uncertainties in Numerical Aerodynamics), which combined development activities of the German Aerospace Center (DLR), German universities and German aircraft industry. The main objective of this five year project was the development of methods and procedures aiming at reducing various types of uncertainties that are typical of numerical flow simulations. The activities were focused on methods for grid manipulation, techniques for increasing the simulation accuracy, sensors for turbulence modelling, methods for handling uncertainties of the geometry and grid deformation as well as stochastic methods for quantifying aleatoric uncertainties.

Book Computational Optimal Control

Download or read book Computational Optimal Control written by Roland Bulirsch and published by Birkhäuser. This book was released on 2012-12-06 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: Resources should be used sparingly both from a point of view of economy and eco logy. Thus in controlling industrial, economical and social processes, optimization is the tool of choice. In this area of applied numerical analysis, the INTERNATIONAL FEDERATION OF AUTOMATIC CONTROL (IFAC) acts as a link between research groups in universities, national research laboratories and industry. For this pur pose, the technical committee Mathematics of Control of IFAC organizes biennial conferences with the objective of bringing together experts to exchange ideas, ex periences and future developments in control applications of optimization. There should be a genuine feedback loop between mathematicians, computer scientists, engineers and software developers. This loop should include the design, application and implementation of algorithms. The contributions of industrial practitioners are especially important. These proceedings contain selected papers from a workshop on CONTROL Ap PLICATIONS OF OPTIMIZATION, which took place at the Fachhochschule Miinchen in September 1992. The workshop was the ninth in a series of very successful bien nial meetings, starting with the Joint Automatic Control Conference in Denver in 1978 and followed by conferences in London, Oberpfaffenhofen, San Francisco, Ca pri, Tbilisi and Paris. The workshop was attended by ninety researchers from four continents. This volume represents the state of the art in the field, with emphasis on progress made since the publication of the proceedings of the Capri meeting, edited by G. di Pillo under the title 'Control Applications of Optimization and Nonlinear Programming'.

Book Formulation and Numerical Solution of Quantum Control Problems

Download or read book Formulation and Numerical Solution of Quantum Control Problems written by Alfio Borzi and published by SIAM. This book was released on 2017-07-06 with total page 396 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to representative nonrelativistic quantum control problems and their theoretical analysis and solution via modern computational techniques. The quantum theory framework is based on the Schr?dinger picture, and the optimization theory, which focuses on functional spaces, is based on the Lagrange formalism. The computational techniques represent recent developments that have resulted from combining modern numerical techniques for quantum evolutionary equations with sophisticated optimization schemes. Both finite and infinite-dimensional models are discussed, including the three-level Lambda system arising in quantum optics, multispin systems in NMR, a charged particle in a well potential, Bose?Einstein condensates, multiparticle spin systems, and multiparticle models in the time-dependent density functional framework. This self-contained book covers the formulation, analysis, and numerical solution of quantum control problems and bridges scientific computing, optimal control and exact controllability, optimization with differential models, and the sciences and engineering that require quantum control methods. ??

Book A Preconditioning Method for Shape Optimization Governed by the Euler Equations

Download or read book A Preconditioning Method for Shape Optimization Governed by the Euler Equations written by National Aeronautics and Space Administration (NASA) and published by Createspace Independent Publishing Platform. This book was released on 2018-08-09 with total page 34 pages. Available in PDF, EPUB and Kindle. Book excerpt: We consider a classical aerodynamic shape optimization problem subject to the compressible Euler flow equations. The gradient of the cost functional with respect to the shape variables is derived with the adjoint method at the continuous level. The Hessian (second order derivative of the cost functional with respect to the shape variables) is approximated also at the continuous level, as first introduced by Arian and Ta'asan (1996). The approximation of the Hessian is used to approximate the Newton step which is essential to accelerate the numerical solution of the optimization problem. The design space is discretized in the maximum dimension, i.e., the location of each point on the intersection of the computational mesh with the airfoil is taken to be an independent design variable. We give numerical examples for 86 design variables in two different flow speeds and achieve an order of magnitude reduction in the cost functional at a computational effort of a full solution of the analysis partial differential equation (PDE). Arian, Eyal and Vatsa, Veer N. Langley Research Center NASA/CR-1998-206926, NAS 1.26:206926, ICASE-98-14 NAS1-19480; RTOP 505-90-52-01...

Book Application of Surrogate based Global Optimization to Aerodynamic Design

Download or read book Application of Surrogate based Global Optimization to Aerodynamic Design written by Emiliano Iuliano and published by Springer. This book was released on 2015-10-05 with total page 86 pages. Available in PDF, EPUB and Kindle. Book excerpt: Aerodynamic design, like many other engineering applications, is increasingly relying on computational power. The growing need for multi-disciplinarity and high fidelity in design optimization for industrial applications requires a huge number of repeated simulations in order to find an optimal design candidate. The main drawback is that each simulation can be computationally expensive – this becomes an even bigger issue when used within parametric studies, automated search or optimization loops, which typically may require thousands of analysis evaluations. The core issue of a design-optimization problem is the search process involved. However, when facing complex problems, the high-dimensionality of the design space and the high-multi-modality of the target functions cannot be tackled with standard techniques. In recent years, global optimization using meta-models has been widely applied to design exploration in order to rapidly investigate the design space and find sub-optimal solutions. Indeed, surrogate and reduced-order models can provide a valuable alternative at a much lower computational cost. In this context, this volume offers advanced surrogate modeling applications and optimization techniques featuring reasonable computational resources. It also discusses basic theory concepts and their application to aerodynamic design cases. It is aimed at researchers and engineers who deal with complex aerodynamic design problems on a daily basis and employ expensive simulations to solve them.

Book Infeasible Path Methods for an Aerodynamic Shape Optimization Problem

Download or read book Infeasible Path Methods for an Aerodynamic Shape Optimization Problem written by Omar Ghattas and published by . This book was released on 1992 with total page 33 pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract: "We consider optimal design problems of systems governed by suitable discretizations of nonlinear partial differential equations. We present and examine a coordinate basis infeasible path method tailored to such design problems. We employ a particular null space representation which exploits the structure of the constraint Jacobian. The resulting method avoids resolution of the nonlinear behavior for each design iterate. Three variants of the method are developed which require the solution of either two or three linear systems involving the stiffness matrix of the discrete boundary value problem. The method is used to solve an aerodynamic design problem governed by nonlinear potential flow. Numerical results demonstrate a substantial performance improvement."

Book Aerodynamic Shape Optimization Using Control Theory

Download or read book Aerodynamic Shape Optimization Using Control Theory written by James John Reuther and published by . This book was released on 1996 with total page 500 pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract: "Aerodynamic shape design has long persisted as a difficult scientific challenge due [sic] its highly nonlinear flow physics and daunting geometric complexity. However, with the emergence of Computational Fluid Dynamics (CFD) it has become possible to make accurate predictions of flows which are not dominated by viscous effects. It is thus worthwhile to explore the extension of CFD methods for flow analysis to the treatment of aerodynamic shape design. Two new aerodynamic shape design methods are developed which combine existing CFD technology, optimal control theory, and numerical optimization techniques. Flow analysis methods for the potential flow equation and the Euler equations form the basis of the two respective design methods. In each case, optimal control theory is used to derive the adjoint differential equations, the solution of which provides the necessary gradient information to a numerical optimization method much more efficiently then [sic] by conventional finite differencing. Each technique uses a quasi-Newton numerical optimization algorithm to drive an aerodynamic objective function toward a minimum. An analytic grid perturbation method is developed to modify body fitted meshes to accommodate shape changes during the design process. Both Hicks-Henne perturbation functions and B-spline control points are explored as suitable design variables. The new methods prove to be computationally efficient and robust, and can be used for practical airfoil design including geometric and aerodynamic constraints. Objective functions are chosen to allow both inverse design to a target pressure distribution and wave drag minimization. Several design cases are presented for each method illustrating its practicality and efficiency. These include non-lifting and lifting airfoils operating at both subsonic and transonic conditions."

Book An Optimal Control Approximation Method in Shape Optimization Problems

Download or read book An Optimal Control Approximation Method in Shape Optimization Problems written by Timo Männikkö and published by . This book was released on 1995 with total page 19 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book A Pde Sensitivity Equation Method for Optimal Aerodynamic Design

Download or read book A Pde Sensitivity Equation Method for Optimal Aerodynamic Design written by National Aeronautics and Space Administration (NASA) and published by Createspace Independent Publishing Platform. This book was released on 2018-06-28 with total page 42 pages. Available in PDF, EPUB and Kindle. Book excerpt: The use of gradient based optimization algorithms in inverse design is well established as a practical approach to aerodynamic design. A typical procedure uses a simulation scheme to evaluate the objective function (from the approximate states) and its gradient, then passes this information to an optimization algorithm. Once the simulation scheme (CFD flow solver) has been selected and used to provide approximate function evaluations, there are several possible approaches to the problem of computing gradients. One popular method is to differentiate the simulation scheme and compute design sensitivities that are then used to obtain gradients. Although this black-box approach has many advantages in shape optimization problems, one must compute mesh sensitivities in order to compute the design sensitivity. In this paper, we present an alternative approach using the PDE sensitivity equation to develop algorithms for computing gradients. This approach has the advantage that mesh sensitivities need not be computed. Moreover, when it is possible to use the CFD scheme for both the forward problem and the sensitivity equation, then there are computational advantages. An apparent disadvantage of this approach is that it does not always produce consistent derivatives. However, for a proper combination of discretization schemes, one can show asymptotic consistency under mesh refinement, which is often sufficient to guarantee convergence of the optimal design algorithm. In particular, we show that when asymptotically consistent schemes are combined with a trust-region optimization algorithm, the resulting optimal design method converges. We denote this approach as the sensitivity equation method. The sensitivity equation method is presented, convergence results are given and the approach is illustrated on two optimal design problems involving shocks. Borggaard, Jeff and Burns, John Ames Research Center NAS1-19480...

Book The Discrete Adjoint Approach to Aerodynamic Shape Optimization

Download or read book The Discrete Adjoint Approach to Aerodynamic Shape Optimization written by Siva Kumaran Nadarajah and published by . This book was released on 2003 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book An All at once Reduced Hessian SQP Scheme for Aerodynamic Design Optimization

Download or read book An All at once Reduced Hessian SQP Scheme for Aerodynamic Design Optimization written by Dan Feng and published by . This book was released on 1995 with total page 17 pages. Available in PDF, EPUB and Kindle. Book excerpt: Abstract: "This paper introduces a computational scheme for solving a class of aerodynamic design problems that can be posed as nonlinear equality constrained optimizations. The scheme treats the flow and design variables as independent variables, and solves the constrained optimization problem via reduced Hessian successive quadratic programming. It updates the design and flow variables simultaneously at each iteration and allows flow variables to be infeasible before convergence. The solution of an adjoint flow equation is never needed. In addition, a range space basis is chosen so that in a certain sense the 'cross term' ignored in reduced Hessian SQP methods is minimized. Numerical results for a nozzle design using the quasi-one-dimensional Euler equations show that this scheme is computationally efficient and robust. The computational cost of a typical nozzle design is only a fraction more than that of the corresponding analysis flow calculation. Superlinear convergence is also observed, which agrees with the theoretical properties of this scheme. All optimal solutions are obtained by starting far away from the final solution."