EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Analysis of Approximation Methods for Differential and Integral Equations

Download or read book Analysis of Approximation Methods for Differential and Integral Equations written by Hans-Jürgen Reinhardt and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 412 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is primarily based on the research done by the Numerical Analysis Group at the Goethe-Universitat in Frankfurt/Main, and on material presented in several graduate courses by the author between 1977 and 1981. It is hoped that the text will be useful for graduate students and for scientists interested in studying a fundamental theoretical analysis of numerical methods along with its application to the most diverse classes of differential and integral equations. The text treats numerous methods for approximating solutions of three classes of problems: (elliptic) boundary-value problems, (hyperbolic and parabolic) initial value problems in partial differential equations, and integral equations of the second kind. The aim is to develop a unifying convergence theory, and thereby prove the convergence of, as well as provide error estimates for, the approximations generated by specific numerical methods. The schemes for numerically solving boundary-value problems are additionally divided into the two categories of finite difference methods and of projection methods for approximating their variational formulations.

Book Approximation Methods for Solutions of Differential and Integral Equations

Download or read book Approximation Methods for Solutions of Differential and Integral Equations written by V. K. Dzyadyk and published by Walter de Gruyter GmbH & Co KG. This book was released on 2018-11-05 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: No detailed description available for "Approximation Methods for Solutions of Differential and Integral Equations".

Book Approximation Methods for Solutions of Differential and Integral Equations

Download or read book Approximation Methods for Solutions of Differential and Integral Equations written by V. K. Dzyadyk and published by VSP. This book was released on 1995 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is the result of 20 years of investigations carried out by the author and his colleagues in order to bring closer and, to a certain extent, synthesize a number of well-known results, ideas and methods from the theory of function approximation, theory of differential and integral equations and numerical analysis. The book opens with an introduction on the theory of function approximation and is followed by a new approach to the Fredholm integral equations to the second kind. Several chapters are devoted to the construction of new methods for the effective approximation of solutions of several important integral, and ordinary and partial differential equations. In addition, new general results on the theory of linear differential equations with one regular singular point, as well as applications of the various new methods are discussed.

Book Numerical Approximation Methods

Download or read book Numerical Approximation Methods written by Harold Cohen and published by Springer Science & Business Media. This book was released on 2011-09-28 with total page 493 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents numerical and other approximation techniques for solving various types of mathematical problems that cannot be solved analytically. In addition to well known methods, it contains some non-standard approximation techniques that are now formally collected as well as original methods developed by the author that do not appear in the literature. This book contains an extensive treatment of approximate solutions to various types of integral equations, a topic that is not often discussed in detail. There are detailed analyses of ordinary and partial differential equations and descriptions of methods for estimating the values of integrals that are presented in a level of detail that will suggest techniques that will be useful for developing methods for approximating solutions to problems outside of this text. The book is intended for researchers who must approximate solutions to problems that cannot be solved analytically. It is also appropriate for students taking courses in numerical approximation techniques.

Book Approximate Methods for Solution of Differential and Integral Equations

Download or read book Approximate Methods for Solution of Differential and Integral Equations written by Solomon Grigorʹevich Mikhlin and published by . This book was released on 1967 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to acquaint the reader with the most important and powerful methods of approximate solution of boundary-value problems (including the Cauchy problem) for differential equations, both ordinary and partial, as well as approximate methods for solution of the most frequently encountered types of integral equations: Fredholm, Volterra and singular one-dimensional. This covers the entire domain of classical applications of mathematical analysis to mechanics, engineering, and mathematical physics.

Book Approximate Solution of Operator Equations

Download or read book Approximate Solution of Operator Equations written by M.A. Krasnosel'skii and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 495 pages. Available in PDF, EPUB and Kindle. Book excerpt: One of the most important chapters in modern functional analysis is the theory of approximate methods for solution of various mathematical problems. Besides providing considerably simplified approaches to numerical methods, the ideas of functional analysis have also given rise to essentially new computation schemes in problems of linear algebra, differential and integral equations, nonlinear analysis, and so on. The general theory of approximate methods includes many known fundamental results. We refer to the classical work of Kantorovich; the investigations of projection methods by Bogolyubov, Krylov, Keldysh and Petrov, much furthered by Mikhlin and Pol'skii; Tikho nov's methods for approximate solution of ill-posed problems; the general theory of difference schemes; and so on. During the past decade, the Voronezh seminar on functional analysis has systematically discussed various questions related to numerical methods; several advanced courses have been held at Voronezh Uni versity on the application of functional analysis to numerical mathe matics. Some of this research is summarized in the present monograph. The authors' aim has not been to give an exhaustive account, even of the principal known results. The book consists of five chapters.

Book Wavelet Based Approximation Schemes for Singular Integral Equations

Download or read book Wavelet Based Approximation Schemes for Singular Integral Equations written by Madan Mohan Panja and published by CRC Press. This book was released on 2020-06-07 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many mathematical problems in science and engineering are defined by ordinary or partial differential equations with appropriate initial-boundary conditions. Among the various methods, boundary integral equation method (BIEM) is probably the most effective. It’s main advantage is that it changes a problem from its formulation in terms of unbounded differential operator to one for an integral/integro-differential operator, which makes the problem tractable from the analytical or numerical point of view. Basically, the review/study of the problem is shifted to a boundary (a relatively smaller domain), where it gives rise to integral equations defined over a suitable function space. Integral equations with singular kernels areamong the most important classes in the fields of elasticity, fluid mechanics, electromagnetics and other domains in applied science and engineering. With the advancesin computer technology, numerical simulations have become important tools in science and engineering. Several methods have been developed in numerical analysis for equations in mathematical models of applied sciences. Widely used methods include: Finite Difference Method (FDM), Finite Element Method (FEM), Finite Volume Method (FVM) and Galerkin Method (GM). Unfortunately, none of these are versatile. Each has merits and limitations. For example, the widely used FDM and FEM suffers from difficulties in problem solving when rapid changes appear in singularities. Even with the modern computing machines, analysis of shock-wave or crack propagations in three dimensional solids by the existing classical numerical schemes is challenging (computational time/memory requirements). Therefore, with the availability of faster computing machines, research into the development of new efficient schemes for approximate solutions/numerical simulations is an ongoing parallel activity. Numerical methods based on wavelet basis (multiresolution analysis) may be regarded as a confluence of widely used numerical schemes based on Finite Difference Method, Finite Element Method, Galerkin Method, etc. The objective of this monograph is to deal with numerical techniques to obtain (multiscale) approximate solutions in wavelet basis of different types of integral equations with kernels involving varieties of singularities appearing in the field of elasticity, fluid mechanics, electromagnetics and many other domains in applied science and engineering.

Book Polynomial Approximation of Differential Equations

Download or read book Polynomial Approximation of Differential Equations written by Daniele Funaro and published by Springer Science & Business Media. This book was released on 2008-10-04 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to the analysis of approximate solution techniques for differential equations, based on classical orthogonal polynomials. These techniques are popularly known as spectral methods. In the last few decades, there has been a growing interest in this subject. As a matter offact, spectral methods provide a competitive alternative to other standard approximation techniques, for a large variety of problems. Initial ap plications were concerned with the investigation of periodic solutions of boundary value problems using trigonometric polynomials. Subsequently, the analysis was extended to algebraic polynomials. Expansions in orthogonal basis functions were preferred, due to their high accuracy and flexibility in computations. The aim of this book is to present a preliminary mathematical background for be ginners who wish to study and perform numerical experiments, or who wish to improve their skill in order to tackle more specific applications. In addition, it furnishes a com prehensive collection of basic formulas and theorems that are useful for implementations at any level of complexity. We tried to maintain an elementary exposition so that no experience in functional analysis is required.

Book Methods of Analysis and Solutions of Crack Problems

Download or read book Methods of Analysis and Solutions of Crack Problems written by George C. Sih and published by Springer Science & Business Media. This book was released on 1973-01-31 with total page 578 pages. Available in PDF, EPUB and Kindle. Book excerpt: It is weH known that the traditional failure criteria cannot adequately explain failures which occur at a nominal stress level considerably lower than the ultimate strength of the material. The current procedure for predicting the safe loads or safe useful life of a structural member has been evolved around the discipline oflinear fracture mechanics. This approach introduces the concept of a crack extension force which can be used to rank materials in some order of fracture resistance. The idea is to determine the largest crack that a material will tolerate without failure. Laboratory methods for characterizing the fracture toughness of many engineering materials are now available. While these test data are useful for providing some rough guidance in the choice of materials, it is not clear how they could be used in the design of a structure. The understanding of the relationship between laboratory tests and fracture design of structures is, to say the least, deficient. Fracture mechanics is presently at astandstill until the basic problems of scaling from laboratory models to fuH size structures and mixed mode crack propagation are resolved. The answers to these questions require some basic understanding ofthe theory and will not be found by testing more specimens. The current theory of fracture is inadequate for many reasons. First of aH it can only treat idealized problems where the applied load must be directed normal to the crack plane.

Book Techniques of Functional Analysis for Differential and Integral Equations

Download or read book Techniques of Functional Analysis for Differential and Integral Equations written by Paul Sacks and published by Academic Press. This book was released on 2017-05-16 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Techniques of Functional Analysis for Differential and Integral Equations describes a variety of powerful and modern tools from mathematical analysis, for graduate study and further research in ordinary differential equations, integral equations and partial differential equations. Knowledge of these techniques is particularly useful as preparation for graduate courses and PhD research in differential equations and numerical analysis, and more specialized topics such as fluid dynamics and control theory. Striking a balance between mathematical depth and accessibility, proofs involving more technical aspects of measure and integration theory are avoided, but clear statements and precise alternative references are given . The work provides many examples and exercises drawn from the literature. - Provides an introduction to mathematical techniques widely used in applied mathematics and needed for advanced research in ordinary and partial differential equations, integral equations, numerical analysis, fluid dynamics and other areas - Establishes the advanced background needed for sophisticated literature review and research in differential equations and integral equations - Suitable for use as a textbook for a two semester graduate level course for M.S. and Ph.D. students in Mathematics and Applied Mathematics

Book Topics in Integral and Integro Differential Equations

Download or read book Topics in Integral and Integro Differential Equations written by Harendra Singh and published by Springer Nature. This book was released on 2021-04-16 with total page 255 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book includes different topics associated with integral and integro-differential equations and their relevance and significance in various scientific areas of study and research. Integral and integro-differential equations are capable of modelling many situations from science and engineering. Readers should find several useful and advanced methods for solving various types of integral and integro-differential equations in this book. The book is useful for graduate students, Ph.D. students, researchers and educators interested in mathematical modelling, applied mathematics, applied sciences, engineering, etc. Key Features • New and advanced methods for solving integral and integro-differential equations • Contains comparison of various methods for accuracy • Demonstrates the applicability of integral and integro-differential equations in other scientific areas • Examines qualitative as well as quantitative properties of solutions of various types of integral and integro-differential equations

Book Linear and Nonlinear Integral Equations

Download or read book Linear and Nonlinear Integral Equations written by Abdul-Majid Wazwaz and published by Springer Science & Business Media. This book was released on 2011-11-24 with total page 639 pages. Available in PDF, EPUB and Kindle. Book excerpt: Linear and Nonlinear Integral Equations: Methods and Applications is a self-contained book divided into two parts. Part I offers a comprehensive and systematic treatment of linear integral equations of the first and second kinds. The text brings together newly developed methods to reinforce and complement the existing procedures for solving linear integral equations. The Volterra integral and integro-differential equations, the Fredholm integral and integro-differential equations, the Volterra-Fredholm integral equations, singular and weakly singular integral equations, and systems of these equations, are handled in this part by using many different computational schemes. Selected worked-through examples and exercises will guide readers through the text. Part II provides an extensive exposition on the nonlinear integral equations and their varied applications, presenting in an accessible manner a systematic treatment of ill-posed Fredholm problems, bifurcation points, and singular points. Selected applications are also investigated by using the powerful Padé approximants. This book is intended for scholars and researchers in the fields of physics, applied mathematics and engineering. It can also be used as a text for advanced undergraduate and graduate students in applied mathematics, science and engineering, and related fields. Dr. Abdul-Majid Wazwaz is a Professor of Mathematics at Saint Xavier University in Chicago, Illinois, USA.

Book Integral Methods in Science and Engineering

Download or read book Integral Methods in Science and Engineering written by Barbara S Bertram and published by CRC Press. This book was released on 2019-05-20 with total page 329 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on proceedings of the International Conference on Integral Methods in Science and Engineering, this collection of papers addresses the solution of mathematical problems by integral methods in conjunction with approximation schemes from various physical domains. Topics and applications include: wavelet expansions, reaction-diffusion systems, variational methods , fracture theory, boundary value problems at resonance, micromechanics, fluid mechanics, combustion problems, nonlinear problems, elasticity theory, and plates and shells.

Book Differential and Integral Equations through Practical Problems and Exercises

Download or read book Differential and Integral Equations through Practical Problems and Exercises written by G. Micula and published by Springer Science & Business Media. This book was released on 1992-08-31 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many important phenomena are described and modeled by means of differential and integral equations. To understand these phenomena necessarily implies being able to solve the differential and integral equations that model them. Such equations, and the development of techniques for solving them, have always held a privileged place in the mathematical sciences. Today, theoretical advances have led to more abstract and comprehensive theories which are increasingly more complex in their mathematical concepts. Theoretical investigations along these lines have led to even more abstract and comprehensive theories, and to increasingly complex mathematical concepts. Long-standing teaching practice has, however, shown that the theory of differential and integral equations cannot be studied thoroughly and understood by mere contemplation. This can only be achieved by acquiring the necessary techniques; and the best way to achieve this is by working through as many different exercises as possible. The eight chapters of this book contain a large number of problems and exercises, selected on the basis of long experience in teaching students, which together with the author's original problems cover the whole range of current methods employed in solving the integral, differential equations, and the partial differential equations of order one, without, however, renouncing the classical problems. Every chapter of this book begins with the succinct theoretical exposition of the minimum of knowledge required to solve the problems and exercises therein.

Book Computing Methods

    Book Details:
  • Author : Ivan Semenovich Berezin
  • Publisher : Pergamon
  • Release : 1965
  • ISBN :
  • Pages : 704 pages

Download or read book Computing Methods written by Ivan Semenovich Berezin and published by Pergamon. This book was released on 1965 with total page 704 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computing Methods, Volume I generalizes and details the methods involved in computer mathematics. The book has been developed in two volumes; Volume I contains Chapters 1 to 5, and Volume II encompasses Chapters 6 to 10.

Book Differential and Integral Equations through Practical Problems and Exercises

Download or read book Differential and Integral Equations through Practical Problems and Exercises written by G. Micula and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 403 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many important phenomena are described and modeled by means of differential and integral equations. To understand these phenomena necessarily implies being able to solve the differential and integral equations that model them. Such equations, and the development of techniques for solving them, have always held a privileged place in the mathematical sciences. Today, theoretical advances have led to more abstract and comprehensive theories which are increasingly more complex in their mathematical concepts. Theoretical investigations along these lines have led to even more abstract and comprehensive theories, and to increasingly complex mathematical concepts. Long-standing teaching practice has, however, shown that the theory of differential and integral equations cannot be studied thoroughly and understood by mere contemplation. This can only be achieved by acquiring the necessary techniques; and the best way to achieve this is by working through as many different exercises as possible. The eight chapters of this book contain a large number of problems and exercises, selected on the basis of long experience in teaching students, which together with the author's original problems cover the whole range of current methods employed in solving the integral, differential equations, and the partial differential equations of order one, without, however, renouncing the classical problems. Every chapter of this book begins with the succinct theoretical exposition of the minimum of knowledge required to solve the problems and exercises therein.

Book Computational Methods for Integral Equations

Download or read book Computational Methods for Integral Equations written by L. M. Delves and published by CUP Archive. This book was released on 1985 with total page 392 pages. Available in PDF, EPUB and Kindle. Book excerpt: This textbook provides a readable account of techniques for numerical solutions.