Download or read book Approximate Dynamic Programming written by Warren B. Powell and published by John Wiley & Sons. This book was released on 2007-10-05 with total page 487 pages. Available in PDF, EPUB and Kindle. Book excerpt: A complete and accessible introduction to the real-world applications of approximate dynamic programming With the growing levels of sophistication in modern-day operations, it is vital for practitioners to understand how to approach, model, and solve complex industrial problems. Approximate Dynamic Programming is a result of the author's decades of experience working in large industrial settings to develop practical and high-quality solutions to problems that involve making decisions in the presence of uncertainty. This groundbreaking book uniquely integrates four distinct disciplines—Markov design processes, mathematical programming, simulation, and statistics—to demonstrate how to successfully model and solve a wide range of real-life problems using the techniques of approximate dynamic programming (ADP). The reader is introduced to the three curses of dimensionality that impact complex problems and is also shown how the post-decision state variable allows for the use of classical algorithmic strategies from operations research to treat complex stochastic optimization problems. Designed as an introduction and assuming no prior training in dynamic programming of any form, Approximate Dynamic Programming contains dozens of algorithms that are intended to serve as a starting point in the design of practical solutions for real problems. The book provides detailed coverage of implementation challenges including: modeling complex sequential decision processes under uncertainty, identifying robust policies, designing and estimating value function approximations, choosing effective stepsize rules, and resolving convergence issues. With a focus on modeling and algorithms in conjunction with the language of mainstream operations research, artificial intelligence, and control theory, Approximate Dynamic Programming: Models complex, high-dimensional problems in a natural and practical way, which draws on years of industrial projects Introduces and emphasizes the power of estimating a value function around the post-decision state, allowing solution algorithms to be broken down into three fundamental steps: classical simulation, classical optimization, and classical statistics Presents a thorough discussion of recursive estimation, including fundamental theory and a number of issues that arise in the development of practical algorithms Offers a variety of methods for approximating dynamic programs that have appeared in previous literature, but that have never been presented in the coherent format of a book Motivated by examples from modern-day operations research, Approximate Dynamic Programming is an accessible introduction to dynamic modeling and is also a valuable guide for the development of high-quality solutions to problems that exist in operations research and engineering. The clear and precise presentation of the material makes this an appropriate text for advanced undergraduate and beginning graduate courses, while also serving as a reference for researchers and practitioners. A companion Web site is available for readers, which includes additional exercises, solutions to exercises, and data sets to reinforce the book's main concepts.
Download or read book Handbook of Learning and Approximate Dynamic Programming written by Jennie Si and published by John Wiley & Sons. This book was released on 2004-08-02 with total page 670 pages. Available in PDF, EPUB and Kindle. Book excerpt: A complete resource to Approximate Dynamic Programming (ADP), including on-line simulation code Provides a tutorial that readers can use to start implementing the learning algorithms provided in the book Includes ideas, directions, and recent results on current research issues and addresses applications where ADP has been successfully implemented The contributors are leading researchers in the field
Download or read book Approximate Dynamic Programming and Stochastic Approximation Methods for Inventory Control and Revenue Management written by Sumit Mathew Kunnumkal and published by . This book was released on 2007 with total page 478 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Reinforcement Learning and Stochastic Optimization written by Warren B. Powell and published by John Wiley & Sons. This book was released on 2022-03-15 with total page 1090 pages. Available in PDF, EPUB and Kindle. Book excerpt: REINFORCEMENT LEARNING AND STOCHASTIC OPTIMIZATION Clearing the jungle of stochastic optimization Sequential decision problems, which consist of “decision, information, decision, information,” are ubiquitous, spanning virtually every human activity ranging from business applications, health (personal and public health, and medical decision making), energy, the sciences, all fields of engineering, finance, and e-commerce. The diversity of applications attracted the attention of at least 15 distinct fields of research, using eight distinct notational systems which produced a vast array of analytical tools. A byproduct is that powerful tools developed in one community may be unknown to other communities. Reinforcement Learning and Stochastic Optimization offers a single canonical framework that can model any sequential decision problem using five core components: state variables, decision variables, exogenous information variables, transition function, and objective function. This book highlights twelve types of uncertainty that might enter any model and pulls together the diverse set of methods for making decisions, known as policies, into four fundamental classes that span every method suggested in the academic literature or used in practice. Reinforcement Learning and Stochastic Optimization is the first book to provide a balanced treatment of the different methods for modeling and solving sequential decision problems, following the style used by most books on machine learning, optimization, and simulation. The presentation is designed for readers with a course in probability and statistics, and an interest in modeling and applications. Linear programming is occasionally used for specific problem classes. The book is designed for readers who are new to the field, as well as those with some background in optimization under uncertainty. Throughout this book, readers will find references to over 100 different applications, spanning pure learning problems, dynamic resource allocation problems, general state-dependent problems, and hybrid learning/resource allocation problems such as those that arose in the COVID pandemic. There are 370 exercises, organized into seven groups, ranging from review questions, modeling, computation, problem solving, theory, programming exercises and a “diary problem” that a reader chooses at the beginning of the book, and which is used as a basis for questions throughout the rest of the book.
Download or read book Approximate Dynamic Programming for Dynamic Vehicle Routing written by Marlin Wolf Ulmer and published by Springer. This book was released on 2017-04-19 with total page 209 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a straightforward overview for every researcher interested in stochastic dynamic vehicle routing problems (SDVRPs). The book is written for both the applied researcher looking for suitable solution approaches for particular problems as well as for the theoretical researcher looking for effective and efficient methods of stochastic dynamic optimization and approximate dynamic programming (ADP). To this end, the book contains two parts. In the first part, the general methodology required for modeling and approaching SDVRPs is presented. It presents adapted and new, general anticipatory methods of ADP tailored to the needs of dynamic vehicle routing. Since stochastic dynamic optimization is often complex and may not always be intuitive on first glance, the author accompanies the ADP-methodology with illustrative examples from the field of SDVRPs. The second part of this book then depicts the application of the theory to a specific SDVRP. The process starts from the real-world application. The author describes a SDVRP with stochastic customer requests often addressed in the literature, and then shows in detail how this problem can be modeled as a Markov decision process and presents several anticipatory solution approaches based on ADP. In an extensive computational study, he shows the advantages of the presented approaches compared to conventional heuristics. To allow deep insights in the functionality of ADP, he presents a comprehensive analysis of the ADP approaches.
Download or read book Linear Programming and Network Flows written by Mokhtar S. Bazaraa and published by . This book was released on 1990 with total page 706 pages. Available in PDF, EPUB and Kindle. Book excerpt: Table of contents
Download or read book Reinforcement Learning and Approximate Dynamic Programming for Feedback Control written by Frank L. Lewis and published by John Wiley & Sons. This book was released on 2013-01-28 with total page 498 pages. Available in PDF, EPUB and Kindle. Book excerpt: Reinforcement learning (RL) and adaptive dynamic programming (ADP) has been one of the most critical research fields in science and engineering for modern complex systems. This book describes the latest RL and ADP techniques for decision and control in human engineered systems, covering both single player decision and control and multi-player games. Edited by the pioneers of RL and ADP research, the book brings together ideas and methods from many fields and provides an important and timely guidance on controlling a wide variety of systems, such as robots, industrial processes, and economic decision-making.
Download or read book Dynamic Programming and Optimal Control written by Dimitri Bertsekas and published by Athena Scientific. This book was released on with total page 613 pages. Available in PDF, EPUB and Kindle. Book excerpt: This is the leading and most up-to-date textbook on the far-ranging algorithmic methododogy of Dynamic Programming, which can be used for optimal control, Markovian decision problems, planning and sequential decision making under uncertainty, and discrete/combinatorial optimization. The treatment focuses on basic unifying themes, and conceptual foundations. It illustrates the versatility, power, and generality of the method with many examples and applications from engineering, operations research, and other fields. It also addresses extensively the practical application of the methodology, possibly through the use of approximations, and provides an extensive treatment of the far-reaching methodology of Neuro-Dynamic Programming/Reinforcement Learning. Among its special features, the book 1) provides a unifying framework for sequential decision making, 2) treats simultaneously deterministic and stochastic control problems popular in modern control theory and Markovian decision popular in operations research, 3) develops the theory of deterministic optimal control problems including the Pontryagin Minimum Principle, 4) introduces recent suboptimal control and simulation-based approximation techniques (neuro-dynamic programming), which allow the practical application of dynamic programming to complex problems that involve the dual curse of large dimension and lack of an accurate mathematical model, 5) provides a comprehensive treatment of infinite horizon problems in the second volume, and an introductory treatment in the first volume The electronic version of the book includes 29 theoretical problems, with high-quality solutions, which enhance the range of coverage of the book.
Download or read book Stochastic optimization methods for supply chains with perishable products written by Michael A. Völkel and published by Logos Verlag Berlin GmbH. This book was released on 2020-07-03 with total page 119 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book deals with inventory systems in supply chains that face risks that could render products unsalable. These risks include possible cooling system failures, transportation risks, packaging errors, handling errors, or natural quality deterioration over time like spoilage of food or blood products. Classical supply chain inventory models do not regard these risks. This thesis introduces novel cost models that consider these risks. It also analyzes how real-time tracking with RFID sensors and smart containers can contribute to decision making. To solve these cost models, this work presents new solution methods based on dynamic programming. In extensive computational studies both with experimental as well as real-life data from large players in the retailer industry, the solution methods prove to lead to substantially lower costs than existing solution methods and heuristics.
Download or read book From Shortest Paths to Reinforcement Learning written by Paolo Brandimarte and published by Springer Nature. This book was released on 2021-01-11 with total page 216 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dynamic programming (DP) has a relevant history as a powerful and flexible optimization principle, but has a bad reputation as a computationally impractical tool. This book fills a gap between the statement of DP principles and their actual software implementation. Using MATLAB throughout, this tutorial gently gets the reader acquainted with DP and its potential applications, offering the possibility of actual experimentation and hands-on experience. The book assumes basic familiarity with probability and optimization, and is suitable to both practitioners and graduate students in engineering, applied mathematics, management, finance and economics.
Download or read book Optimal Enterprise written by Mikhail V. Belov and published by CRC Press. This book was released on 2021-07-28 with total page 373 pages. Available in PDF, EPUB and Kindle. Book excerpt: In the modern world, most gross product is created within Enterprise firms, project programs, state agencies, transnational corporations and their divisions, as well as various associations and compositions of the above entities. Enterprises, being, on the one hand, complex, and, on the other hand, widespread systems, are the subject matter of cybernetics, system theory, operations research, management sciences and many other fields of knowledge. However, the complexity of the system obstructs the development of mathematically rigorous foundations for Enterprise control. Moreover, methods of operations research and related sciences, which are widely used in practice, provide optimization of the constituents of an Enterprise, without modeling it as a whole system. But the optimization of parts does not lead to the optimality of the whole, and, also, the absence of top-down and holistic mathematical models of Enterprise contradicts the principle of holism and the system approach. The approach in this book looks first at Enterprise Systems and their essential aspects as complex sociotechnical systems composed of integrated sets of structural and process models (Chapters 1 and 2). A uniform description of all the heterogeneous fields of the modern Enterprise (marketing, sales, manufacturing, HR, finance, etc.) is then made, and the Enterprise Control Problem is posed as a top-down and holistic mathematical optimization problem (Chapter 3). Original models and methods of contract theory (Chapter 4), technology management (Chapter 5), human behavior and human capital (Chapter 6) and complex activity and resource planning (Chapter 7) are developed to solve the problem. Structural processes and mathematical models constitute an Optimal Enterprise Control Framework (Chapter 8) that provides a practical solution to the Enterprise Control Problem. This book is a resource for postgraduate and doctoral students, postdoctoral researchers and professors with research interests in the following fields of science: Fundamental Complex Systems study, Complex Systems Engineering, Enterprise Systems Engineering Applications of Operations Research, Optimization, Probability and Stochastic processes to Management Science, Economics and Business Theory of the Firm Business and Management – general, strategy/leadership, organization management, operations management and management information systems Theory of Business Processes, Business Processes Improvement and Reengineering
Download or read book Decision Models in Engineering and Management written by Patricia Guarnieri and published by Springer. This book was released on 2015-01-05 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Providing a comprehensive overview of various methods and applications in decision engineering, this book presents chapters written by a range experts in the field. It presents conceptual aspects of decision support applications in various areas including finance, vendor selection, construction, process management, water management and energy, agribusiness , production scheduling and control, and waste management. In addition to this, a special focus is given to methods of multi-criteria decision analysis. Decision making in organizations is a recurrent theme and is essential for business continuity. Managers from various fields including public, private, industrial, trading or service sectors are required to make decisions. Consequently managers need the support of these structured methods in order to engage in effective decision making. This book provides a valuable resource for graduate students, professors and researchers of decision analysis, multi-criteria decision analysis and group decision analysis. It is also intended for production engineers, civil engineers and engineering consultants.
Download or read book Advances in Stochastic Dynamic Programming for Operations Management written by Frank Schneider and published by Logos Verlag Berlin GmbH. This book was released on 2014 with total page 172 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many tasks in operations management require the solution of complex optimization problems. Problems in which decisions are taken sequentially over time can be modeled and solved by dynamic programming. Real-world dynamic programming problems, however, exhibit complexity that cannot be handled by conventional solution techniques. This complexity may stem from large state and solution spaces, huge sets of possible actions, non-convexities in the objective function, and uncertainty. In this book, three highly complex real-world problems from the domain of operations management are modeled and solved by newly developed solution techniques based on stochastic dynamic programming. First, the problem of optimally scheduling participating demand units in an energy transmission network is considered. These units are scheduled such that total cost of supplying demand for electric energy is minimized under uncertainty in demand and generation. Second, the integrated problem of investment in and optimal operations of a network of battery swap stations under uncertain demand and energy prices is modeled and solved. Third, the inventory control problem of a multi-channel retailer selling through independent sales channels is modeled and optimality conditions for replenishment policies of simple structure are proven. This book introduces efficient approximation techniques based on approximate dynamic programming (ADP) and extends existing proximal point algorithms to the stochastic case. The methods are applicable to a wide variety of dynamic programming problems of high dimension.
Download or read book Revenue Management and Pricing Analytics written by Guillermo Gallego and published by Springer. This book was released on 2019-08-14 with total page 346 pages. Available in PDF, EPUB and Kindle. Book excerpt: “There is no strategic investment that has a higher return than investing in good pricing, and the text by Gallego and Topaloghu provides the best technical treatment of pricing strategy and tactics available.” Preston McAfee, the J. Stanley Johnson Professor, California Institute of Technology and Chief Economist and Corp VP, Microsoft. “The book by Gallego and Topaloglu provides a fresh, up-to-date and in depth treatment of revenue management and pricing. It fills an important gap as it covers not only traditional revenue management topics also new and important topics such as revenue management under customer choice as well as pricing under competition and online learning. The book can be used for different audiences that range from advanced undergraduate students to masters and PhD students. It provides an in-depth treatment covering recent state of the art topics in an interesting and innovative way. I highly recommend it." Professor Georgia Perakis, the William F. Pounds Professor of Operations Research and Operations Management at the Sloan School of Management, Massachusetts Institute of Technology, Cambridge, Massachusetts. “This book is an important and timely addition to the pricing analytics literature by two authors who have made major contributions to the field. It covers traditional revenue management as well as assortment optimization and dynamic pricing. The comprehensive treatment of choice models in each application is particularly welcome. It is mathematically rigorous but accessible to students at the advanced undergraduate or graduate levels with a rich set of exercises at the end of each chapter. This book is highly recommended for Masters or PhD level courses on the topic and is a necessity for researchers with an interest in the field.” Robert L. Phillips, Director of Pricing Research at Amazon “At last, a serious and comprehensive treatment of modern revenue management and assortment optimization integrated with choice modeling. In this book, Gallego and Topaloglu provide the underlying model derivations together with a wide range of applications and examples; all of these facets will better equip students for handling real-world problems. For mathematically inclined researchers and practitioners, it will doubtless prove to be thought-provoking and an invaluable reference.” Richard Ratliff, Research Scientist at Sabre “This book, written by two of the leading researchers in the area, brings together in one place most of the recent research on revenue management and pricing analytics. New industries (ride sharing, cloud computing, restaurants) and new developments in the airline and hotel industries make this book very timely and relevant, and will serve as a critical reference for researchers.” Professor Kalyan Talluri, the Munjal Chair in Global Business and Operations, Imperial College, London, UK.
Download or read book Advances in Intelligent Manufacturing and Service System Informatics written by Zekâi Şen and published by Springer Nature. This book was released on 2023-11-02 with total page 824 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book comprises the proceedings of the 12th International Symposium on Intelligent Manufacturing and Service Systems 2023. The contents of this volume focus on recent technological advances in the field of artificial intelligence in manufacturing & service systems including machine learning, autonomous control, bioinformatics, human-artificial intelligence interaction, digital twin, robotic systems, sybersecurity, etc. This volume will prove a valuable resource for those in academia and industry.
Download or read book Computational Finance 1999 written by Yaser S. Abu-Mostafa and published by MIT Press. This book was released on 2000 with total page 744 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book covers the techniques of data mining, knowledge discovery, genetic algorithms, neural networks, bootstrapping, machine learning, and Monte Carlo simulation. Computational finance, an exciting new cross-disciplinary research area, draws extensively on the tools and techniques of computer science, statistics, information systems, and financial economics. This book covers the techniques of data mining, knowledge discovery, genetic algorithms, neural networks, bootstrapping, machine learning, and Monte Carlo simulation. These methods are applied to a wide range of problems in finance, including risk management, asset allocation, style analysis, dynamic trading and hedging, forecasting, and option pricing. The book is based on the sixth annual international conference Computational Finance 1999, held at New York University's Stern School of Business.
Download or read book Optimization and Logistics Challenges in the Enterprise written by Wanpracha Chaovalitwongse and published by Springer Science & Business Media. This book was released on 2009-06-17 with total page 434 pages. Available in PDF, EPUB and Kindle. Book excerpt: In a world with highly competitive markets and economic instability due to capitalization, industrial competition has increasingly intensified. In order for many industries to survive and succeed, they need to develop highly effective coordination between supply chain partners, dynamic collaborative and strategic alliance relationships, and efficient logistics and supply chain network designs. Consequently, in the past decade, there has been an explosion of interest among academic researchers and industrial practitioners in innovative supply chain and logistics models, algorithms, and coordination policies. Mathematically distinct from classical supply chain management, this emerging research area has been proven to be useful and applicable to a wide variety of industries. This book brings together recent advances in supply chain and logistics research and computational optimization that apply to a collaborative environment in the enterprise.