Download or read book The Physics of Fluids and Plasmas written by Arnab Rai Choudhuri and published by Cambridge University Press. This book was released on 1998-11-26 with total page 452 pages. Available in PDF, EPUB and Kindle. Book excerpt: A good working knowledge of fluid mechanics and plasma physics is essential for the modern astrophysicist. This graduate textbook provides a clear, pedagogical introduction to these core subjects. Assuming an undergraduate background in physics, this book develops fluid mechanics and plasma physics from first principles. This book is unique because it presents neutral fluids and plasmas in a unified scheme, clearly indicating both their similarities and their differences. Also, both the macroscopic (continuum) and microscopic (particle) theories are developed, establishing the connections between them. Throughout, key examples from astrophysics are used, though no previous knowledge of astronomy is assumed. Exercises are included at the end of chapters to test the reader's understanding. This textbook is aimed primarily at astrophysics graduate students. It will also be of interest to advanced students in physics and applied mathematics seeking a unified view of fluid mechanics and plasma physics, encompassing both the microscopic and macroscopic theories.
Download or read book Fluid Dynamics and Dynamos in Astrophysics and Geophysics written by Andrew M. Soward and published by CRC Press. This book was released on 2005-03-16 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: The increasing power of computer resources along with great improvements in observational data in recent years have led to some remarkable and rapid advances in astrophysical fluid dynamics. The subject spans three distinct but overlapping communities whose interests focus on (1) accretion discs and high-energy astrophysics; (2) solar, stellar, and
Download or read book Computational Methods for Astrophysical Fluid Flow written by Randall J. LeVeque and published by Springer Science & Business Media. This book was released on 2006-04-18 with total page 523 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book leads directly to the most modern numerical techniques for compressible fluid flow, with special consideration given to astrophysical applications. Emphasis is put on high-resolution shock-capturing finite-volume schemes based on Riemann solvers. The applications of such schemes, in particular the PPM method, are given and include large-scale simulations of supernova explosions by core collapse and thermonuclear burning and astrophysical jets. Parts two and three treat radiation hydrodynamics. The power of adaptive (moving) grids is demonstrated with a number of stellar-physical simulations showing very crispy shock-front structures.
Download or read book An Introduction to Astrophysical Fluid Dynamics written by Michael J. Thompson and published by Imperial College Press. This book was released on 2006 with total page 242 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction for graduate students and advanced undergraduate students to the field of astrophysical fluid dynamics. Although sometimes ignored, fluid dynamical processes play a central role in virtually all areas of astrophysics.No previous knowledge of fluid dynamics is assumed. After establishing the basic equations of fluid dynamics and the physics relevant to an astrophysical application, a variety of topics in the field are addressed. There is also a chapter introducing the reader to numerical methods. Appendices list useful physical constants and astronomical quantities, and provide handy reference material on Cartesian tensors, vector calculus in polar coordinates, self-adjoint eigenvalue problems and JWKB theory.
Download or read book Principles of Astrophysical Fluid Dynamics written by Cathie Clarke and published by Cambridge University Press. This book was released on 2007-03-08 with total page 239 pages. Available in PDF, EPUB and Kindle. Book excerpt: An advanced textbook on AFD introducing astrophysics students to the necessary fluid dynamics, first published in 2007.
Download or read book Theoretical Fluid Mechanics written by Richard Fitzpatrick and published by . This book was released on 2017 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: "Theoretical Fluid Mechanics' has been written to aid physics students who wish to pursue a course of self-study in fluid mechanics. It is a comprehensive, completely self-contained text with equations of fluid mechanics derived from first principles, and any required advanced mathematics is either fully explained in the text, or in an appendix. It is accompanied by about 180 exercises with completely worked out solutions. It also includes extensive sections on the application of fluid mechanics to topics of importance in astrophysics and geophysics. These topics include the equilibrium of rotating, self-gravitating, fluid masses; tidal bores; terrestrial ocean tides; and the Eddington solar model."--Prové de l'editor.
Download or read book Applied Mathematics Fluid Mechanics Astrophysics written by David J. Benney and published by . This book was released on 1988 with total page 460 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Astrophysical Flows written by James E. Pringle and published by Cambridge University Press. This book was released on 2007-04-26 with total page 217 pages. Available in PDF, EPUB and Kindle. Book excerpt: Almost all conventional matter in the Universe is fluid, and fluid dynamics plays a crucial role in astrophysics. This graduate textbook, first published in 2007, provides a basic understanding of the fluid dynamical processes relevant to astrophysics. The mathematics used to describe these processes is simplified to bring out the underlying physics. The authors cover many topics, including wave propagation, shocks, spherical flows, stellar oscillations, the instabilities caused by effects such as magnetic fields, thermal driving, gravity, shear flows, and the basic concepts of compressible fluid dynamics and magnetohydrodynamics. The authors are Directors of the UK Astrophysical Fluids Facility (UKAFF) at the University of Leicester, and editors of the Cambridge Astrophysics Series. This book has been developed from a course in astrophysical fluid dynamics taught at the University of Cambridge. It is suitable for graduate students in astrophysics, physics and applied mathematics, and requires only a basic familiarity with fluid dynamics.
Download or read book Modern Fluid Dynamics for Physics and Astrophysics written by Oded Regev and published by Springer. This book was released on 2016-05-11 with total page 699 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book grew out of the need to provide students with a solid introduction to modern fluid dynamics. It offers a broad grounding in the underlying principles and techniques used, with some emphasis on applications in astrophysics and planetary science. The book comprehensively covers recent developments, methods and techniques, including, for example, new ideas on transitions to turbulence (via transiently growing stable linear modes), new approaches to turbulence (which remains the enigma of fluid dynamics), and the use of asymptotic approximation methods, which can give analytical or semi-analytical results and complement fully numerical treatments. The authors also briefly discuss some important considerations to be taken into account when developing a numerical code for computer simulation of fluid flows. Although the text is populated throughout with examples and problems from the field of astrophysics and planetary science, the text is eminently suitable as a general introduction to fluid dynamics. It is assumed that the readers are mathematically equipped with a reasonable knowledge in analysis, including basics of ordinary and partial differential equations and a good command of vector calculus and linear algebra. Each chapter concludes with bibliographical notes in which the authors briefly discuss the chapter's essential literature and give recommendations for further, deeper reading. Included in each chapter are a number of problems, some of them relevant to astrophysics and planetary science. The book is written for advanced undergraduate and graduate students, but will also prove a valuable source of reference for established researchers.
Download or read book Astrophysical Fluid Dynamics written by E. Battaner and published by Cambridge University Press. This book was released on 1996-02-23 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: This first course in fluid dynamics covers the basics and introduces a wealth of astronomical applications.
Download or read book Applied Analysis of the Navier Stokes Equations written by Charles R. Doering and published by Cambridge University Press. This book was released on 1995 with total page 236 pages. Available in PDF, EPUB and Kindle. Book excerpt: This introductory physical and mathematical presentation of the Navier-Stokes equations focuses on unresolved questions of the regularity of solutions in three spatial dimensions, and the relation of these issues to the physical phenomenon of turbulent fluid motion.
Download or read book Physics of Continuous Media written by Grigory Vekstein and published by CRC Press. This book was released on 1992-01-01 with total page 208 pages. Available in PDF, EPUB and Kindle. Book excerpt: Physics of Continuous Media: A Collection of Problems with Solutions for Physics Students contains a set of problems with detailed and rigorous solutions. Aimed at undergraduate and postgraduate students in physics and applied mathematics, the book is a complementary text for standard courses on the physics of continuous media. With its assortment of standard problems for beginners, variations on a theme, and original problems based on new trends and theories in the physics under investigation, this book aids in the understanding of practical aspects of the subject. Topics discussed include vectors, tensors, and Fourier transformations; dielectric waves in media; natural optical activity; Cherenkov radiation; nonlinear interaction of waves; dynamics of ideal fluids and the motion of viscous fluids; convection; turbulence and acoustic and shock waves; the theory of elasticity; and the mechanics of liquid crystals.
Download or read book Fluid Mechanics of Planets and Stars written by Michael Le Bars and published by Springer. This book was released on 2019-07-15 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book explores the dynamics of planetary and stellar fluid layers, including atmospheres, oceans, iron cores, and convective and radiative zones in stars, describing the different theoretical, computational and experimental methods used to study these problems in fluid mechanics, including the advantages and limitations of each method for different problems. This scientific domain is by nature interdisciplinary and multi-method, but while much effort has been devoted to solving open questions within the various fields of mechanics, applied mathematics, physics, earth sciences and astrophysics, and while much progress has been made within each domain using theoretical, numerical and experimental approaches, cross-fertilizations have remained marginal. Going beyond the state of the art, the book provides readers with a global introduction and an up-to-date overview of relevant studies, fully addressing the wide range of disciplines and methods involved. The content builds on the CISM course “Fluid mechanics of planets and stars”, held in April 2018, which was part of the research project FLUDYCO, supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program.
Download or read book Computational Methods for Fluid Flow written by Roger Peyret and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 364 pages. Available in PDF, EPUB and Kindle. Book excerpt: In developing this book, we decided to emphasize applications and to provide methods for solving problems. As a result, we limited the mathematical devel opments and we tried as far as possible to get insight into the behavior of numerical methods by considering simple mathematical models. The text contains three sections. The first is intended to give the fundamen tals of most types of numerical approaches employed to solve fluid-mechanics problems. The topics of finite differences, finite elements, and spectral meth ods are included, as well as a number of special techniques. The second section is devoted to the solution of incompressible flows by the various numerical approaches. We have included solutions of laminar and turbulent-flow prob lems using finite difference, finite element, and spectral methods. The third section of the book is concerned with compressible flows. We divided this last section into inviscid and viscous flows and attempted to outline the methods for each area and give examples.
Download or read book Introduction to Hydrodynamic Stability written by P. G. Drazin and published by Cambridge University Press. This book was released on 2002-09-09 with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt: Instability of flows and their transition to turbulence are widespread phenomena in engineering and the natural environment, and are important in applied mathematics, astrophysics, biology, geophysics, meteorology, oceanography and physics as well as engineering. This is a textbook to introduce these phenomena at a level suitable for a graduate course, by modelling them mathematically, and describing numerical simulations and laboratory experiments. The visualization of instabilities is emphasized, with many figures, and in references to more still and moving pictures. The relation of chaos to transition is discussed at length. Many worked examples and exercises for students illustrate the ideas of the text. Readers are assumed to be fluent in linear algebra, advanced calculus, elementary theory of ordinary differential equations, complex variables and the elements of fluid mechanics. The book is aimed at graduate students but will also be very useful for specialists in other fields.
Download or read book Computational Fluid Dynamics written by Jiri Blazek and published by Elsevier. This book was released on 2005-12-20 with total page 491 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Fluid Dynamics (CFD) is an important design tool in engineering and also a substantial research tool in various physical sciences as well as in biology. The objective of this book is to provide university students with a solid foundation for understanding the numerical methods employed in today's CFD and to familiarise them with modern CFD codes by hands-on experience. It is also intended for engineers and scientists starting to work in the field of CFD or for those who apply CFD codes. Due to the detailed index, the text can serve as a reference handbook too. Each chapter includes an extensive bibliography, which provides an excellent basis for further studies.
Download or read book Numerical Methods for Fluid Dynamics written by Dale R. Durran and published by Springer Science & Business Media. This book was released on 2010-09-14 with total page 527 pages. Available in PDF, EPUB and Kindle. Book excerpt: This scholarly text provides an introduction to the numerical methods used to model partial differential equations, with focus on atmospheric and oceanic flows. The book covers both the essentials of building a numerical model and the more sophisticated techniques that are now available. Finite difference methods, spectral methods, finite element method, flux-corrected methods and TVC schemes are all discussed. Throughout, the author keeps to a middle ground between the theorem-proof formalism of a mathematical text and the highly empirical approach found in some engineering publications. The book establishes a concrete link between theory and practice using an extensive range of test problems to illustrate the theoretically derived properties of various methods. From the reviews: "...the books unquestionable advantage is the clarity and simplicity in presenting virtually all basic ideas and methods of numerical analysis currently actively used in geophysical fluid dynamics." Physics of Atmosphere and Ocean