EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Applied Machine Learning for Healthcare and Life Sciences Using AWS

Download or read book Applied Machine Learning for Healthcare and Life Sciences Using AWS written by Ujjwal Ratan and published by Packt Publishing Ltd. This book was released on 2022-11-25 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build real-world artificial intelligence apps on AWS to overcome challenges faced by healthcare providers and payers, as well as pharmaceutical, life sciences research, and commercial organizations Key FeaturesLearn about healthcare industry challenges and how machine learning can solve themExplore AWS machine learning services and their applications in healthcare and life sciencesDiscover practical coding instructions to implement machine learning for healthcare and life sciencesBook Description While machine learning is not new, it's only now that we are beginning to uncover its true potential in the healthcare and life sciences industry. The availability of real-world datasets and access to better compute resources have helped researchers invent applications that utilize known AI techniques in every segment of this industry, such as providers, payers, drug discovery, and genomics. This book starts by summarizing the introductory concepts of machine learning and AWS machine learning services. You'll then go through chapters dedicated to each segment of the healthcare and life sciences industry. Each of these chapters has three key purposes -- First, to introduce each segment of the industry, its challenges, and the applications of machine learning relevant to that segment. Second, to help you get to grips with the features of the services available in the AWS machine learning stack like Amazon SageMaker and Amazon Comprehend Medical. Third, to enable you to apply your new skills to create an ML-driven solution to solve problems particular to that segment. The concluding chapters outline future industry trends and applications. By the end of this book, you'll be aware of key challenges faced in applying AI to healthcare and life sciences industry and learn how to address those challenges with confidence. What you will learnExplore the healthcare and life sciences industryFind out about the key applications of AI in different industry segmentsApply AI to medical images, clinical notes, and patient dataDiscover security, privacy, fairness, and explainability best practicesExplore the AWS ML stack and key AI services for the industryDevelop practical ML skills using code and AWS servicesDiscover all about industry regulatory requirementsWho this book is for This book is specifically tailored toward technology decision-makers, data scientists, machine learning engineers, and anyone who works in the data engineering role in healthcare and life sciences organizations. Whether you want to apply machine learning to overcome common challenges in the healthcare and life science industry or are looking to understand the broader industry AI trends and landscape, this book is for you. This book is filled with hands-on examples for you to try as you learn about new AWS AI concepts.

Book Applied Machine Learning for Healthcare and Life Sciences Using AWS

Download or read book Applied Machine Learning for Healthcare and Life Sciences Using AWS written by Ujjwal Ratan and published by Packt Publishing Ltd. This book was released on 2022-11-25 with total page 224 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build real-world artificial intelligence apps on AWS to overcome challenges faced by healthcare providers and payers, as well as pharmaceutical, life sciences research, and commercial organizations Key FeaturesLearn about healthcare industry challenges and how machine learning can solve themExplore AWS machine learning services and their applications in healthcare and life sciencesDiscover practical coding instructions to implement machine learning for healthcare and life sciencesBook Description While machine learning is not new, it's only now that we are beginning to uncover its true potential in the healthcare and life sciences industry. The availability of real-world datasets and access to better compute resources have helped researchers invent applications that utilize known AI techniques in every segment of this industry, such as providers, payers, drug discovery, and genomics. This book starts by summarizing the introductory concepts of machine learning and AWS machine learning services. You'll then go through chapters dedicated to each segment of the healthcare and life sciences industry. Each of these chapters has three key purposes -- First, to introduce each segment of the industry, its challenges, and the applications of machine learning relevant to that segment. Second, to help you get to grips with the features of the services available in the AWS machine learning stack like Amazon SageMaker and Amazon Comprehend Medical. Third, to enable you to apply your new skills to create an ML-driven solution to solve problems particular to that segment. The concluding chapters outline future industry trends and applications. By the end of this book, you'll be aware of key challenges faced in applying AI to healthcare and life sciences industry and learn how to address those challenges with confidence. What you will learnExplore the healthcare and life sciences industryFind out about the key applications of AI in different industry segmentsApply AI to medical images, clinical notes, and patient dataDiscover security, privacy, fairness, and explainability best practicesExplore the AWS ML stack and key AI services for the industryDevelop practical ML skills using code and AWS servicesDiscover all about industry regulatory requirementsWho this book is for This book is specifically tailored toward technology decision-makers, data scientists, machine learning engineers, and anyone who works in the data engineering role in healthcare and life sciences organizations. Whether you want to apply machine learning to overcome common challenges in the healthcare and life science industry or are looking to understand the broader industry AI trends and landscape, this book is for you. This book is filled with hands-on examples for you to try as you learn about new AWS AI concepts.

Book Applied Machine Learning and High Performance Computing on AWS

Download or read book Applied Machine Learning and High Performance Computing on AWS written by Mani Khanuja and published by Packt Publishing Ltd. This book was released on 2022-12-30 with total page 382 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build, train, and deploy large machine learning models at scale in various domains such as computational fluid dynamics, genomics, autonomous vehicles, and numerical optimization using Amazon SageMaker Key FeaturesUnderstand the need for high-performance computing (HPC)Build, train, and deploy large ML models with billions of parameters using Amazon SageMakerLearn best practices and architectures for implementing ML at scale using HPCBook Description Machine learning (ML) and high-performance computing (HPC) on AWS run compute-intensive workloads across industries and emerging applications. Its use cases can be linked to various verticals, such as computational fluid dynamics (CFD), genomics, and autonomous vehicles. This book provides end-to-end guidance, starting with HPC concepts for storage and networking. It then progresses to working examples on how to process large datasets using SageMaker Studio and EMR. Next, you'll learn how to build, train, and deploy large models using distributed training. Later chapters also guide you through deploying models to edge devices using SageMaker and IoT Greengrass, and performance optimization of ML models, for low latency use cases. By the end of this book, you'll be able to build, train, and deploy your own large-scale ML application, using HPC on AWS, following industry best practices and addressing the key pain points encountered in the application life cycle. What you will learnExplore data management, storage, and fast networking for HPC applicationsFocus on the analysis and visualization of a large volume of data using SparkTrain visual transformer models using SageMaker distributed trainingDeploy and manage ML models at scale on the cloud and at the edgeGet to grips with performance optimization of ML models for low latency workloadsApply HPC to industry domains such as CFD, genomics, AV, and optimizationWho this book is for The book begins with HPC concepts, however, it expects you to have prior machine learning knowledge. This book is for ML engineers and data scientists interested in learning advanced topics on using large datasets for training large models using distributed training concepts on AWS, deploying models at scale, and performance optimization for low latency use cases. Practitioners in fields such as numerical optimization, computation fluid dynamics, autonomous vehicles, and genomics, who require HPC for applying ML models to applications at scale will also find the book useful.

Book Machine Learning in Biological Sciences

Download or read book Machine Learning in Biological Sciences written by Shyamasree Ghosh and published by Springer Nature. This book was released on 2022-05-04 with total page 337 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book gives an overview of applications of Machine Learning (ML) in diverse fields of biological sciences, including healthcare, animal sciences, agriculture, and plant sciences. Machine learning has major applications in process modelling, computer vision, signal processing, speech recognition, and language understanding and processing and life, and health sciences. It is increasingly used in understanding DNA patterns and in precision medicine. This book is divided into eight major sections, each containing chapters that describe the application of ML in a certain field. The book begins by giving an introduction to ML and the various ML methods. It then covers interesting and timely aspects such as applications in genetics, cell biology, the study of plant-pathogen interactions, and animal behavior. The book discusses computational methods for toxicity prediction of environmental chemicals and drugs, which forms a major domain of research in the field of biology. It is of relevance to post-graduate students and researchers interested in exploring the interdisciplinary areas of use of machine learning and deep learning in life sciences.

Book Machine Learning in Biotechnology and Life Sciences

Download or read book Machine Learning in Biotechnology and Life Sciences written by Saleh Alkhalifa and published by Packt Publishing Ltd. This book was released on 2022-01-28 with total page 408 pages. Available in PDF, EPUB and Kindle. Book excerpt: Explore all the tools and templates needed for data scientists to drive success in their biotechnology careers with this comprehensive guide Key FeaturesLearn the applications of machine learning in biotechnology and life science sectorsDiscover exciting real-world applications of deep learning and natural language processingUnderstand the general process of deploying models to cloud platforms such as AWS and GCPBook Description The booming fields of biotechnology and life sciences have seen drastic changes over the last few years. With competition growing in every corner, companies around the globe are looking to data-driven methods such as machine learning to optimize processes and reduce costs. This book helps lab scientists, engineers, and managers to develop a data scientist's mindset by taking a hands-on approach to learning about the applications of machine learning to increase productivity and efficiency in no time. You'll start with a crash course in Python, SQL, and data science to develop and tune sophisticated models from scratch to automate processes and make predictions in the biotechnology and life sciences domain. As you advance, the book covers a number of advanced techniques in machine learning, deep learning, and natural language processing using real-world data. By the end of this machine learning book, you'll be able to build and deploy your own machine learning models to automate processes and make predictions using AWS and GCP. What you will learnGet started with Python programming and Structured Query Language (SQL)Develop a machine learning predictive model from scratch using PythonFine-tune deep learning models to optimize their performance for various tasksFind out how to deploy, evaluate, and monitor a model in the cloudUnderstand how to apply advanced techniques to real-world dataDiscover how to use key deep learning methods such as LSTMs and transformersWho this book is for This book is for data scientists and scientific professionals looking to transcend to the biotechnology domain. Scientific professionals who are already established within the pharmaceutical and biotechnology sectors will find this book useful. A basic understanding of Python programming and beginner-level background in data science conjunction is needed to get the most out of this book.

Book AI and Blockchain in Healthcare

Download or read book AI and Blockchain in Healthcare written by Bipin Kumar Rai and published by Springer Nature. This book was released on 2023-04-30 with total page 241 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents state-of-the-art blockchain and AI advances in health care. Healthcare service is increasingly creating the scope for blockchain and AI applications to enter the biomedical and healthcare world. Today, blockchain, AI, ML, and deep learning are affecting every domain. Through its cutting-edge applications, AI and ML are helping transform the healthcare industry for the better. Blockchain is a decentralization communication platform that has the potential to decentralize the way we store data and manage information. Blockchain technology has potential to reduce the role of middleman, one of the most important regulatory actors in our society. Transactions are simultaneously secure and trustworthy due to the use of cryptographic principles. In recent years, blockchain technology has become very trendy and has penetrated different domains, mostly due to the popularity of cryptocurrencies. One field where blockchain technology has tremendous potential is health care, due to the need for a more patient-centric approach in healthcare systems to connect disparate systems and to increase the accuracy of electronic healthcare records (EHRs).

Book Applied Data Science

    Book Details:
  • Author : Martin Braschler
  • Publisher : Springer
  • Release : 2019-06-13
  • ISBN : 3030118215
  • Pages : 464 pages

Download or read book Applied Data Science written by Martin Braschler and published by Springer. This book was released on 2019-06-13 with total page 464 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book has two main goals: to define data science through the work of data scientists and their results, namely data products, while simultaneously providing the reader with relevant lessons learned from applied data science projects at the intersection of academia and industry. As such, it is not a replacement for a classical textbook (i.e., it does not elaborate on fundamentals of methods and principles described elsewhere), but systematically highlights the connection between theory, on the one hand, and its application in specific use cases, on the other. With these goals in mind, the book is divided into three parts: Part I pays tribute to the interdisciplinary nature of data science and provides a common understanding of data science terminology for readers with different backgrounds. These six chapters are geared towards drawing a consistent picture of data science and were predominantly written by the editors themselves. Part II then broadens the spectrum by presenting views and insights from diverse authors – some from academia and some from industry, ranging from financial to health and from manufacturing to e-commerce. Each of these chapters describes a fundamental principle, method or tool in data science by analyzing specific use cases and drawing concrete conclusions from them. The case studies presented, and the methods and tools applied, represent the nuts and bolts of data science. Finally, Part III was again written from the perspective of the editors and summarizes the lessons learned that have been distilled from the case studies in Part II. The section can be viewed as a meta-study on data science across a broad range of domains, viewpoints and fields. Moreover, it provides answers to the question of what the mission-critical factors for success in different data science undertakings are. The book targets professionals as well as students of data science: first, practicing data scientists in industry and academia who want to broaden their scope and expand their knowledge by drawing on the authors’ combined experience. Second, decision makers in businesses who face the challenge of creating or implementing a data-driven strategy and who want to learn from success stories spanning a range of industries. Third, students of data science who want to understand both the theoretical and practical aspects of data science, vetted by real-world case studies at the intersection of academia and industry.

Book Collaborative Networks of Cognitive Systems

Download or read book Collaborative Networks of Cognitive Systems written by Luis M. Camarinha-Matos and published by Springer. This book was released on 2018-09-06 with total page 662 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the 19th IFIP WG 5.5 Working Conference on Virtual Enterprises, PRO-VE 2018, held in Cardiff, UK, in September 2018. The 57 revised full papers were carefully reviewed and selected from 143 submissions. They provide a comprehensive overview of identified challenges and recent advances in various collaborative network (CN) domains and their applications, with a strong focus on the following areas: blockchain in collaborative networks, industry transformation and innovation, semantics in networks of cognitive systems, cognitive systems for resilience management, collaborative energy services in smart cities, cognitive systems in agribusiness, building information modeling, industry 4.0 support frameworks, health and social welfare services, risk, privacy and security, collaboration platform issues, sensing, smart and sustainable enterprises, information systems integration, dynamic logistics networks, collaborative business processes, value creation in networks, users and organizations profiling, and collaborative business strategies.

Book Trends in Educational Activity in the Field of Mechanism and Machine Theory  2018   2022

Download or read book Trends in Educational Activity in the Field of Mechanism and Machine Theory 2018 2022 written by Juan Carlos García Prada and published by Springer Nature. This book was released on 2023-06-10 with total page 256 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents content from the Third International Symposium on the Education in Mechanism and Machine Science (ISEMMS 2022). Among others, the chapters report on mechanical engineering education, mechanism and machine science in the mechanical engineer curricula, methodology, virtual laboratories and new laws. Special attention is given to MMS experiences in Pandemic times. The chapters discuss the current problems in MMS education with the aim of providing solutions and identifying appropriate trends for a modern world common vision in the Engineering education field.

Book The Definitive Guide to Google Vertex AI

Download or read book The Definitive Guide to Google Vertex AI written by Jasmeet Bhatia and published by Packt Publishing Ltd. This book was released on 2023-12-29 with total page 422 pages. Available in PDF, EPUB and Kindle. Book excerpt: Implement machine learning pipelines with Google Cloud Vertex AI Key Features Understand the role of an AI platform and MLOps practices in machine learning projects Get acquainted with Google Vertex AI tools and offerings that help accelerate the creation of end-to-end ML solutions Implement Vision, NLP, and recommendation-based real-world ML models on Google Cloud Platform Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionWhile AI has become an integral part of every organization today, the development of large-scale ML solutions and management of complex ML workflows in production continue to pose challenges for many. Google’s unified data and AI platform, Vertex AI, directly addresses these challenges with its array of MLOPs tools designed for overall workflow management. This book is a comprehensive guide that lets you explore Google Vertex AI’s easy-to-advanced level features for end-to-end ML solution development. Throughout this book, you’ll discover how Vertex AI empowers you by providing essential tools for critical tasks, including data management, model building, large-scale experimentations, metadata logging, model deployments, and monitoring. You’ll learn how to harness the full potential of Vertex AI for developing and deploying no-code, low-code, or fully customized ML solutions. This book takes a hands-on approach to developing u deploying some real-world ML solutions on Google Cloud, leveraging key technologies such as Vision, NLP, generative AI, and recommendation systems. Additionally, this book covers pre-built and turnkey solution offerings as well as guidance on seamlessly integrating them into your ML workflows. By the end of this book, you’ll have the confidence to develop and deploy large-scale production-grade ML solutions using the MLOps tooling and best practices from Google.What you will learn Understand the ML lifecycle, challenges, and importance of MLOps Get started with ML model development quickly using Google Vertex AI Manage datasets, artifacts, and experiments Develop no-code, low-code, and custom AI solution on Google Cloud Implement advanced model optimization techniques and tooling Understand pre-built and turnkey AI solution offerings from Google Build and deploy custom ML models for real-world applications Explore the latest generative AI tools within Vertex AI Who this book is for If you are a machine learning practitioner who wants to learn end-to-end ML solution development on Google Cloud Platform using MLOps best practices and tools offered by Google Vertex AI, this is the book for you.

Book Convergence of Deep Learning and Internet of Things  Computing and Technology

Download or read book Convergence of Deep Learning and Internet of Things Computing and Technology written by Kavitha, T. and published by IGI Global. This book was released on 2022-12-19 with total page 371 pages. Available in PDF, EPUB and Kindle. Book excerpt: Digital technology has enabled a number of internet-enabled devices that generate huge volumes of data from different systems. This large amount of heterogeneous data requires efficient data collection, processing, and analytical methods. Deep Learning is one of the latest efficient and feasible solutions that enable smart devices to function independently with a decision-making support system. Convergence of Deep Learning and Internet of Things: Computing and Technology contributes to technology and methodology perspectives in the incorporation of deep learning approaches in solving a wide range of issues in the IoT domain to identify, optimize, predict, forecast, and control emerging IoT systems. Covering topics such as data quality, edge computing, and attach detection and prediction, this premier reference source is a comprehensive resource for electricians, communications specialists, mechanical engineers, civil engineers, computer scientists, students and educators of higher education, librarians, researchers, and academicians.

Book Machine Learning in Modeling and Simulation

Download or read book Machine Learning in Modeling and Simulation written by Timon Rabczuk and published by Springer Nature. This book was released on 2023-11-04 with total page 456 pages. Available in PDF, EPUB and Kindle. Book excerpt: Machine learning (ML) approaches have been extensively and successfully employed in various areas, like in economics, medical predictions, face recognition, credit card fraud detection, and spam filtering. There is clearly also the potential that ML techniques developed in Engineering and the Sciences will drastically increase the possibilities of analysis and accelerate the design to analysis time. With the use of ML techniques, coupled to conventional methods like finite element and digital twin technologies, new avenues of modeling and simulation can be opened but the potential of these ML techniques needs to still be fully harvested, with the methods developed and enhanced. The objective of this book is to provide an overview of ML in Engineering and the Sciences presenting fundamental theoretical ingredients with a focus on the next generation of computer modeling in Engineering and the Sciences in which the exciting aspects of machine learning are incorporated. The book is of value to any researcher and practitioner interested in research or applications of ML in the areas of scientific modeling and computer aided engineering.

Book ECCWS 2019 18th European Conference on Cyber Warfare and Security

Download or read book ECCWS 2019 18th European Conference on Cyber Warfare and Security written by Tiago Cruz and published by Academic Conferences and publishing limited. This book was released on 2019-07-04 with total page 884 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Who s who in European Research and Development

Download or read book Who s who in European Research and Development written by and published by . This book was released on 1997 with total page 658 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Yearbook of International Organizations 2013 2014  Volumes 1a 1b

Download or read book Yearbook of International Organizations 2013 2014 Volumes 1a 1b written by Union Of International Associations and published by . This book was released on 2013-06-21 with total page 1450 pages. Available in PDF, EPUB and Kindle. Book excerpt: Volume 1 (A and B) covers international organizations throughout the world, comprising their aims, activities and events.

Book Applied Machine Learning and Multi Criteria Decision Making in Healthcare

Download or read book Applied Machine Learning and Multi Criteria Decision Making in Healthcare written by Ilker Ozsahin and published by Bentham Science Publishers. This book was released on 2021-11-18 with total page 316 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an ideal foundation for readers to understand the application of artificial intelligence (AI) and machine learning (ML) techniques to expert systems in the healthcare sector. It starts with an introduction to the topic and presents chapters which progressively explain decision-making theory that helps solve problems which have multiple criteria that can affect the outcome of a decision. Key aspects of the subject such as machine learning in healthcare, prediction techniques, mathematical models and classification of healthcare problems are included along with chapters which delve in to advanced topics on data science (deep-learning, artificial neural networks, etc.) and practical examples (influenza epidemiology and retinoblastoma treatment analysis). Key Features: - Introduces readers to the basics of AI and ML in expert systems for healthcare - Focuses on a problem solving approach to the topic - Provides information on relevant decision-making theory and data science used in the healthcare industry - Includes practical applications of AI and ML for advanced readers - Includes bibliographic references for further reading The reference is an accessible source of knowledge on multi-criteria decision-support systems in healthcare for medical consultants, healthcare policy makers, researchers in the field of medical biotechnology, oncology and pharmaceutical research and development.

Book Welding Journal

Download or read book Welding Journal written by and published by . This book was released on 2009 with total page 550 pages. Available in PDF, EPUB and Kindle. Book excerpt: