EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Applied Biomedical Engineering Mechanics

Download or read book Applied Biomedical Engineering Mechanics written by Dhanjoo Ghista and published by CRC Press. This book was released on 2008-07-18 with total page 592 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combining topics from numerous applications in biomechanics, Applied Biomedical Engineering Mechanics demonstrates how to analyze physiological processes from an engineering perspective and apply the results to tertiary medical care. The book extends its discussion to the investigation of diagnostic and surgical procedures. It also presents guideli

Book Applied Biomedical Engineering

Download or read book Applied Biomedical Engineering written by Gaetano Gargiulo and published by BoD – Books on Demand. This book was released on 2011-08-23 with total page 516 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book presents a collection of recent and extended academic works in selected topics of biomedical technology, biomedical instrumentations, biomedical signal processing and bio-imaging. This wide range of topics provide a valuable update to researchers in the multidisciplinary area of biomedical engineering and an interesting introduction for engineers new to the area. The techniques covered include modelling, experimentation and discussion with the application areas ranging from bio-sensors development to neurophysiology, telemedicine and biomedical signal classification.

Book Principles of Applied Biomedical Instrumentation

Download or read book Principles of Applied Biomedical Instrumentation written by L. A. Geddes and published by John Wiley & Sons. This book was released on 1991-01-08 with total page 994 pages. Available in PDF, EPUB and Kindle. Book excerpt: Encyclopedia of Medical Devices and Instrumentation John G. Webster, Editor-in-Chief This comprehensive encyclopedia, the work of more than 400 contributors, includes 266 articles on devices and instrumentation that are currently or likely to be useful in medicine and biomedical engineering. The four volumes include 3,022 pages of text that concentrates on how technology assists the branches of medicine. The articles emphasize the contributions of engineering, physics, and computers to each of the general areas of medicine, and are designed not for peers, but rather for workers from related fields who wish to take a first look at what is important in the subject. Highly recommended for university biomedical engineering and medical reference collections, and for anyone with a science background or an interest in technology. Includes a 78-page index, cross-references, and high-quality diagrams, illustrations, and photographs. 1988 (0 471-82936-6) 4-Volume Set Introduction to Radiological Physics and Radiation Dosimetry Frank Herbert Attix provides complete and useful coverage of radiological physics. Unlike most treatments of the subject, it encompasses radiation dosimetry in general, rather than discussing only its applications in medical or health physics. The treatment flows logically from basics to more advanced topics. Coverage extends through radiation interactions to cavity theories and dosimetry of X-rays, charged particles, and neutrons. Several important subjects that have never been thoroughly analyzed in the literature are treated here in detail, such as charged-particle equilibrium, broad-beam attenuation and geometries, derivation of the Kramers X-ray spectrum, and the reciprocity theorem, which is also extended to the nonisotropic homogeneous case. 1986 (0 471-01146-0) 607 pp. Medical Physics John R. Cameron and James G. Skofronick This detailed text describes medical physics in a simple, straightforward manner. It discusses the physical principles involved in the control and functon of organs and organ systems such as the eyes, ears, lungs, heart, and circulatory system. There is also coverage of the application of mechanics, heat, light, sound, electricity, and magnetism to medicine, particularly of the various instruments used for the diagnosis and treatment of disease. 1978 (0 471-13131-8) 615 pp.

Book Principles of Applied Biomedical Instrumentation

Download or read book Principles of Applied Biomedical Instrumentation written by Leslie Alexander Geddes and published by Wiley-Interscience. This book was released on 1975 with total page 652 pages. Available in PDF, EPUB and Kindle. Book excerpt: Encyclopedia of Medical Devices and Instrumentation John G. Webster, Editor-in-Chief This comprehensive encyclopedia, the work of more than 400 contributors, includes 266 articles on devices and instrumentation that are currently or likely to be useful in medicine and biomedical engineering. The four volumes include 3,022 pages of text that concentrates on how technology assists the branches of medicine. The articles emphasize the contributions of engineering, physics, and computers to each of the general areas of medicine, and are designed not for peers, but rather for workers from related fields who wish to take a first look at what is important in the subject. Highly recommended for university biomedical engineering and medical reference collections, and for anyone with a science background or an interest in technology. Includes a 78-page index, cross-references, and high-quality diagrams, illustrations, and photographs. 1988 (0 471-82936-6) 4-Volume Set Introduction to Radiological Physics and Radiation Dosimetry Frank Herbert Attix provides complete and useful coverage of radiological physics. Unlike most treatments of the subject, it encompasses radiation dosimetry in general, rather than discussing only its applications in medical or health physics. The treatment flows logically from basics to more advanced topics. Coverage extends through radiation interactions to cavity theories and dosimetry of X-rays, charged particles, and neutrons. Several important subjects that have never been thoroughly analyzed in the literature are treated here in detail, such as charged-particle equilibrium, broad-beam attenuation and geometries, derivation of the Kramers X-ray spectrum, and the reciprocity theorem, which is also extended to the nonisotropic homogeneous case. 1986 (0 471-01146-0) 607 pp. Medical Physics John R. Cameron and James G. Skofronick This detailed text describes medical physics in a simple, straightforward manner. It discusses the physical principles involved in the control and functon of organs and organ systems such as the eyes, ears, lungs, heart, and circulatory system. There is also coverage of the application of mechanics, heat, light, sound, electricity, and magnetism to medicine, particularly of the various instruments used for the diagnosis and treatment of disease. 1978 (0 471-13131-8) 615 pp.

Book Problems for Biomedical Fluid Mechanics and Transport Phenomena

Download or read book Problems for Biomedical Fluid Mechanics and Transport Phenomena written by Mark Johnson and published by Cambridge University Press. This book was released on 2014 with total page 183 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique resource offers over two hundred well-tested bioengineering problems for teaching and examinations. Solutions are available to instructors online.

Book Physiology for Engineers

Download or read book Physiology for Engineers written by Michael Chappell and published by Springer Nature. This book was released on 2020-04-27 with total page 179 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides an introduction to qualitative and quantitative aspects of human physiology. It examines biological and physiological processes and phenomena, including a selection of mathematical models, showing how physiological problems can be mathematically formulated and studied. It also illustrates how a wide range of engineering and physics topics, such as electronics, fluid dynamics, solid mechanics and control theory can be used to describe and understand physiological processes and systems. Throughout the text, there are introductions to measuring and quantifying physiological processes using both signaling and imaging technologies. This new edition includes updated material on pathophysiology, metabolism and the TCA cycle, as well as more advanced worked examples. This book describes the basic structure and models of cellular systems, the structure and function of the cardiovascular system, and the electrical and mechanical activity of the heart, and provides an overview of the structure and function of the respiratory and nervous systems. It also includes an introduction to the basic concepts and applications of reaction kinetics, pharmacokinetic modelling and tracer kinetics. It appeals to final year biomedical engineering undergraduates and graduates alike, as well as to practising engineers new to the fields of bioengineering or medical physics.

Book Design and Simulation in Biomedical Mechanics

Download or read book Design and Simulation in Biomedical Mechanics written by Juan Alfonso Beltran-Fernandez and published by Springer Nature. This book was released on 2021-03-01 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book integrates bioengineering for solving health issues. It shows how the use of applied mechanics and strength of materials using 3D printing models, digital correlation techniques and computed tomography images, provides solutions to biology, medicine and mechanical engineering. The book provides clear processes and illustrations, several worked examples, and many projects. It helps scientists to analyze different modes of applying mechanical and biomedical concepts, physical principles to develop devices, sensors, prosthesis, orthotic systems, new materials and techniques that may improve the health system. It can be used in courses such as biomechanics and orthopedics, rehabilitation and mechanical engineering, also in rehabilitation or sports medicine.

Book Medicine Meets Engineering

Download or read book Medicine Meets Engineering written by Joachim Hammer and published by IOS Press. This book was released on 2008 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biomedical Engineering is defined as the science that integrates medical and engineering sciences to improve diagnosis and treatment of patients. Only by this integration progress can be achieved. Both medical and engineering sciences comprise a huge diversity in topics, so it is imaginable that Biomedical Engineering, combining these two science areas, is even more huge. Thanks to this megadisciplinary approach many breakthroughs can be achieved. More and more research groups realize this and start new research projects, which results in a rapid increase in knowledge in Biomedical Engineering. This will only benefit the main goal of Biomedical Engineering; improving diagnosis and treatment of patients when it is spread and applied. The 2nd Regensburg Applied Biomechanics conference is special in that it realized both the distribution of new knowledge and the essential integration of medical and engineering specialists. The conference dealt with the latest results in applied biomechanics, ranging from fundamental bone strength properties via bone remodeling phenomena to new implants that replace lost human functions. Also new research areas like robot surgery and tissue engineering were discussed.

Book Biomedical Engineering of Pancreatic  Pulmonary  and Renal Systems  and Applications to Medicine

Download or read book Biomedical Engineering of Pancreatic Pulmonary and Renal Systems and Applications to Medicine written by Dhanjoo N. Ghista and published by Elsevier. This book was released on 2023-05-15 with total page 756 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biomedical Engineering Modeling of Pancreatic, Respiratory, and Renal Regulatory Systems, and their Medical Assessments addresses the need for biomedical engineering to provide physiological analysis of organ systems and their medical applications to help enable quantitative formulation of physiological systems and defining their functions and dysfunctions, leading to precision diagnostics of diabetes, lung diseases, and kidney failure, often in the form of non-dimensional indices. The book chapters also deal with treatment systems, namely automated insulin infusion systems, hemodialysis, and peritoneal dialysis. The book is formulated to solve many physiological, bioengineering, and medical problems. - Covers foundational concepts of the emerging fields of quantitative physiology and computational medicine, developing the biomedical engineering modeling of three important organ systems: pancreas, lungs, and kidneys - Provides readers with detailed understanding of novel biomedical engineering strategies in key areas, such as pancreatic system engineering, glucose-insulin regulatory system engineering, pulmonary system engineering, and renal system engineering - Provides in-depth technical coverage of computational modeling techniques and applied mathematics for these important physiological systems, including differential equations and the associated MATLAB datasets for all applied diagnostic and treatment examples

Book Applied Biofluid Mechanics

Download or read book Applied Biofluid Mechanics written by Lee Waite and published by McGraw Hill Professional. This book was released on 2007-04-05 with total page 333 pages. Available in PDF, EPUB and Kindle. Book excerpt: Improve Your Grasp of Fluid Mechanics in the Human Circulatory System_and Develop Better Medical Devices Applied Biofluid Mechanics features a solid grasp of the role of fluid mechanics in the human circulatory system that will help in the research and design of new medical instruments, equipment, and procedures. Filled with 100 detailed illustrations, the book examines cardiovascular anatomy and physiology, pulmonary anatomy and physiology, hematology, histology and function of blood vessels, heart valve mechanics and prosthetic heart valves, stents, pulsatile flow in large arteries, flow and pressure measurement, modeling, and dimensional analysis.

Book Biofluid Mechanics

    Book Details:
  • Author : Wei Yin
  • Publisher : Academic Press
  • Release : 2011-11-02
  • ISBN : 0123813840
  • Pages : 411 pages

Download or read book Biofluid Mechanics written by Wei Yin and published by Academic Press. This book was released on 2011-11-02 with total page 411 pages. Available in PDF, EPUB and Kindle. Book excerpt: Both broad and deep in coverage, Rubenstein shows that fluid mechanics principles can be applied not only to blood circulation, but also to air flow through the lungs, joint lubrication, intraocular fluid movement and renal transport. Each section initiates discussion with governing equations, derives the state equations and then shows examples of their usage. Clinical applications, extensive worked examples, and numerous end of chapter problems clearly show the applications of fluid mechanics to biomedical engineering situations. A section on experimental techniques provides a springboard for future research efforts in the subject area. - Uses language and math that is appropriate and conducive for undergraduate learning, containing many worked examples and end of chapter problems - All engineering concepts and equations are developed within a biological context - Covers topics in the traditional biofluids curriculum, as well as addressing other systems in the body that can be described by biofluid mechanics principles, such as air flow through the lungs, joint lubrication, intraocular fluid movement, and renal transport - Clinical applications are discussed throughout the book, providing practical applications for the concepts discussed.

Book Biomedical Engineering Principles in Sports

Download or read book Biomedical Engineering Principles in Sports written by George K. Hung and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 509 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biomedical Engineering Principles in Sports contains in-depth discussions on the fundamental biomechanical and physiological principles underlying the acts of throwing, shooting, hitting, kicking, and tackling in sports, as well as vision training, sports injury, and rehabilitation. The topics include: -Golf ball aerodynamics and golf club design, -Golf swing and putting biomechanics, -Tennis ball aerodynamics and ball- and shoe-surface interactions, -Tennis stroke mechanics and optimizing ball-racket interactions, -Baseball pitching biomechanics and perceptual illusions of batters, -Football forward pass aerodynamics and tackling biomechanics, -Soccer biomechanics, -Basketball aerodynamics and biomechanics, -Vision training in sports, -Children maturation and performance, -Rehabilitation and medical advances in treatment of sports injuries. This book is essential reading for biomedical engineers, physicists, sport scientists, and physiologists who wish to update their knowledge of biomechanical and biomedical principles and their applications to sports. The book can be used in a one-semester Senior or Graduate-level course in Biomechanics, Biomedical Engineering, Sports Technology, Sports Medicine, or Exercise Physiology. In addition, it will be of value to interested athletic laypersons who enjoy watching or participating in sports such as golf, tennis, softball, football, soccer, and basketball.

Book Applied Biomedical Engineering Using Artificial Intelligence and Cognitive Models

Download or read book Applied Biomedical Engineering Using Artificial Intelligence and Cognitive Models written by Jorge Garza Ulloa and published by Elsevier. This book was released on 2021-11-30 with total page 705 pages. Available in PDF, EPUB and Kindle. Book excerpt: Applied Biomedical Engineering Using Artificial Intelligence and Cognitive Models focuses on the relationship between three different multidisciplinary branches of engineering: Biomedical Engineering, Cognitive Science and Computer Science through Artificial Intelligence models. These models will be used to study how the nervous system and musculoskeletal system obey movement orders from the brain, as well as the mental processes of the information during cognition when injuries and neurologic diseases are present in the human body. The interaction between these three areas are studied in this book with the objective of obtaining AI models on injuries and neurologic diseases of the human body, studying diseases of the brain, spine and the nerves that connect them with the musculoskeletal system. There are more than 600 diseases of the nervous system, including brain tumors, epilepsy, Parkinson's disease, stroke, and many others. These diseases affect the human cognitive system that sends orders from the central nervous system (CNS) through the peripheral nervous systems (PNS) to do tasks using the musculoskeletal system. These actions can be detected by many Bioinstruments (Biomedical Instruments) and cognitive device data, allowing us to apply AI using Machine Learning-Deep Learning-Cognitive Computing models through algorithms to analyze, detect, classify, and forecast the process of various illnesses, diseases, and injuries of the human body. Applied Biomedical Engineering Using Artificial Intelligence and Cognitive Models provides readers with the study of injuries, illness, and neurological diseases of the human body through Artificial Intelligence using Machine Learning (ML), Deep Learning (DL) and Cognitive Computing (CC) models based on algorithms developed with MATLAB® and IBM Watson®. Provides an introduction to Cognitive science, cognitive computing and human cognitive relation to help in the solution of AI Biomedical engineering problems Explain different Artificial Intelligence (AI) including evolutionary algorithms to emulate natural evolution, reinforced learning, Artificial Neural Network (ANN) type and cognitive learning and to obtain many AI models for Biomedical Engineering problems Includes coverage of the evolution Artificial Intelligence through Machine Learning (ML), Deep Learning (DL), Cognitive Computing (CC) using MATLAB® as a programming language with many add-on MATLAB® toolboxes, and AI based commercial products cloud services as: IBM (Cognitive Computing, IBM Watson®, IBM Watson Studio®, IBM Watson Studio Visual Recognition®), and others Provides the necessary tools to accelerate obtaining results for the analysis of injuries, illness, and neurologic diseases that can be detected through the static, kinetics and kinematics, and natural body language data and medical imaging techniques applying AI using ML-DL-CC algorithms with the objective of obtaining appropriate conclusions to create solutions that improve the quality of life of patients

Book Biomedical Science  Engineering and Technology

Download or read book Biomedical Science Engineering and Technology written by Dhanjoo N. Ghista and published by BoD – Books on Demand. This book was released on 2012-01-20 with total page 906 pages. Available in PDF, EPUB and Kindle. Book excerpt: This innovative book integrates the disciplines of biomedical science, biomedical engineering, biotechnology, physiological engineering, and hospital management technology. Herein, Biomedical science covers topics on disease pathways, models and treatment mechanisms, and the roles of red palm oil and phytomedicinal plants in reducing HIV and diabetes complications by enhancing antioxidant activity. Biomedical engineering coves topics of biomaterials (biodegradable polymers and magnetic nanomaterials), coronary stents, contact lenses, modelling of flows through tubes of varying cross-section, heart rate variability analysis of diabetic neuropathy, and EEG analysis in brain function assessment. Biotechnology covers the topics of hydrophobic interaction chromatography, protein scaffolds engineering, liposomes for construction of vaccines, induced pluripotent stem cells to fix genetic diseases by regenerative approaches, polymeric drug conjugates for improving the efficacy of anticancer drugs, and genetic modification of animals for agricultural use. Physiological engineering deals with mathematical modelling of physiological (cardiac, lung ventilation, glucose regulation) systems and formulation of indices for medical assessment (such as cardiac contractility, lung disease status, and diabetes risk). Finally, Hospital management science and technology involves the application of both biomedical engineering and industrial engineering for cost-effective operation of a hospital.

Book Tissue Mechanics

Download or read book Tissue Mechanics written by Stephen C. Cowin and published by Springer Science & Business Media. This book was released on 2006-10-25 with total page 685 pages. Available in PDF, EPUB and Kindle. Book excerpt: The structures of living tissues are continually changing due to growth and response to the tissue environment, including the mechanical environment. Tissue Mechanics is an in-depth look at the mechanics of tissues. Tissue Mechanics describes the nature of the composite components of a tissue, the cellular processes that produce these constituents, the assembly of the constituents into a hierarchical structure, and the behavior of the tissue’s composite structure in the adaptation to its mechanical environment. Organized as a textbook for the student needing to acquire the core competencies, Tissue Mechanics will meet the demands of advanced undergraduate or graduate coursework in Biomedical Engineering, as well as, Chemical, Civil, and Mechanical Engineering. Key features: Detailed Illustrations Example problems, including problems at the end of sections A separate solutions manual available for course instructors A website (http://tissue-mechanics.com/) that has been established to provide supplemental material for the book, including downloadable additional chapters on specific tissues, downloadable PowerPoint presentations of all the book's chapters, and additional exercises and examples for the existing chapters. About the Authors: Stephen C. Cowin is a City University of New York Distinguished Professor, Departments of Biomedical and Mechanical Engineering, City College of the City University of New York and also an Adjunct Professor of Orthopaedics, at the Mt. Sinai School of Medicine in New York, New York. In 1985 he received the Society of Tulane Engineers and Lee H. Johnson Award for Teaching Excellence and a recipient of the European Society of Biomechanics Research Award in 1994. In 1999 he received the H. R. Lissner medal of the ASME for contributions to biomedical engineering. In 2004 he was elected to the National Academy of Engineering (NAE) and he also received the Maurice A. Biot medal of the American Society of Civil Engineers (ASCE). Stephen B. Doty is a Senior Scientist at Hospital for Special Surgery, New York, New York and Adjunct Professor, School of Dental and Oral Surgery, Columbia University, New York, NY. He has over 100 publications in the field of anatomy, developmental biology, and the physiology of skeletal and connective tissues. His honors include several commendations for participation in the Russian/NASA spaceflights, the Spacelab Life Science NASA spaceflights, and numerous Shuttle missions that studied the influence of spaceflight on skeletal physiology. He presently is on the scientific advisory board of the National Space Biomedical Research Institute, Houston, Texas.

Book Cardiology Science and Technology

Download or read book Cardiology Science and Technology written by Dhanjoo N. Ghista and published by CRC Press. This book was released on 2016-04-27 with total page 554 pages. Available in PDF, EPUB and Kindle. Book excerpt: Cardiology Science and Technology comprehensively deals with the science and biomedical engineering formulations of cardiology. As a textbook, it addresses the teaching, research, and clinical aspects of cardiovascular medical engineering and computational cardiology. The books consists of two sections. The first section deals with left ventricular

Book Advances in Biomedical Engineering

Download or read book Advances in Biomedical Engineering written by J. H. U. Brown and published by Elsevier. This book was released on 2014-05-09 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Biomedical Engineering, Volume 2, is a collection of papers that discusses the basic sciences, the applied sciences of engineering, the medical sciences, and the delivery of health services. One paper discusses the models of adrenal cortical control, including the secretion and metabolism of cortisol (the controlled process), as well as the initiation and modulation of secretion of ACTH (the controller). Another paper discusses hospital computer systems—application problems, objective evaluation of technology, and multiple pathways for future hospital computer applications. The possible information paths of an orthotic or prosthetic systems using computing ability include the following components: signal sources, transducers, signal processors, output systems, feedback receptors, and local feedback. Ultrasound energy is a powerful diagnostic tool since it is nondestructive and has asertainability characteristics. The medical technician or researcher can also use gas-phase analytical instruments and analytical systems in investigative chemical methods involving microgram, nanogram or pictogram amounts of individual organic compounds. The collection is suitable for biochemists, microbiologists, bio-engineers, and investigators whose works involve biomedical engineering and physiological research.