EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book African Doctorates in Mathematics

Download or read book African Doctorates in Mathematics written by and published by Lulu.com. This book was released on 2007 with total page 385 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents a catalogue of over 2000 doctoral theses by Africans in all fields of mathematics, including applied mathematics, mathematics education and history of mathematics. The introduction contains information about distribution by country, institutions, period, and by gender, about mathematical density, and mobility of mathematicians. Several appendices are included (female doctorate holders, doctorates in mathematics education, doctorates awarded by African universities to non-Africans, doctoral theses by non-Africans about mathematics in Africa, activities of African mathematicians at the service of their communities). Paulus Gerdes compiled the information in his capacity of Chairman of the African Mathematical Union Commission for the History of Mathematics in Africa (AMUCHMA). The book contains a preface by Mohamed Hassan, President of the African Academy of Sciences (AAS) and Executive Director of the Academy of Sciences for the Developing World (TWAS). (383 pp.)

Book Advanced Boundary Element Methods

Download or read book Advanced Boundary Element Methods written by Joachim Gwinner and published by Springer. This book was released on 2018-07-28 with total page 661 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to the mathematical analysis of the numerical solution of boundary integral equations treating boundary value, transmission and contact problems arising in elasticity, acoustic and electromagnetic scattering. It serves as the mathematical foundation of the boundary element methods (BEM) both for static and dynamic problems. The book presents a systematic approach to the variational methods for boundary integral equations including the treatment with variational inequalities for contact problems. It also features adaptive BEM, hp-version BEM, coupling of finite and boundary element methods – efficient computational tools that have become extremely popular in applications. Familiarizing readers with tools like Mellin transformation and pseudodifferential operators as well as convex and nonsmooth analysis for variational inequalities, it concisely presents efficient, state-of-the-art boundary element approximations and points to up-to-date research. The authors are well known for their fundamental work on boundary elements and related topics, and this book is a major contribution to the modern theory of the BEM (especially for error controlled adaptive methods and for unilateral contact and dynamic problems) and is a valuable resource for applied mathematicians, engineers, scientists and graduate students.

Book Boundary Value Problems of Finite Elasticity

Download or read book Boundary Value Problems of Finite Elasticity written by Tullio Valent and published by Springer Science & Business Media. This book was released on 2013-03-07 with total page 201 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book I present, in a systematic form, some local theorems on existence, uniqueness, and analytic dependence on the load, which I have recently obtained for some types of boundary value problems of finite elasticity. Actually, these results concern an n-dimensional (n ~ 1) formal generalization of three-dimensional elasticity. Such a generalization, be sides being quite spontaneous, allows us to consider a great many inter esting mathematical situations, and sometimes allows us to clarify certain aspects of the three-dimensional case. Part of the matter presented is unpublished; other arguments have been only partially published and in lesser generality. Note that I concentrate on simultaneous local existence and uniqueness; thus, I do not deal with the more general theory of exis tence. Moreover, I restrict my discussion to compressible elastic bodies and I do not treat unilateral problems. The clever use of the inverse function theorem in finite elasticity made by STOPPELLI [1954, 1957a, 1957b], in order to obtain local existence and uniqueness for the traction problem in hyperelasticity under dead loads, inspired many of the ideas which led to this monograph. Chapter I aims to give a very brief introduction to some general concepts in the mathematical theory of elasticity, in order to show how the boundary value problems studied in the sequel arise. Chapter II is very technical; it supplies the framework for all sub sequent developments.

Book Boundary Value Problems on Time Scales  Volume II

Download or read book Boundary Value Problems on Time Scales Volume II written by Svetlin G. Georgiev and published by CRC Press. This book was released on 2021-10-15 with total page 213 pages. Available in PDF, EPUB and Kindle. Book excerpt: Boundary Value Problems on Time Scales, Volume II is devoted to the qualitative theory of boundary value problems on time scales. Summarizing the most recent contributions in this area, it addresses a wide audience of specialists such as mathematicians, physicists, engineers and biologists. It can be used as a textbook at the graduate level and as a reference book for several disciplines. The text contains two volumes, both published by Chapman & Hall/CRC Press. Volume I presents boundary value problems for first- and second-order dynamic equations on time scales. Volume II investigates boundary value problems for three, four, and higher-order dynamic equations on time scales. Many results to differential equations carry over easily to corresponding results for difference equations, while other results seem to be totally different in nature. Because of these reasons, the theory of dynamic equations is an active area of research. The time-scale calculus can be applied to any field in which dynamic processes are described by discrete or continuous time models. The calculus of time scales has various applications involving noncontinuous domains such as certain bug populations, phytoremediation of metals, wound healing, maximization problems in economics, and traffic problems. Boundary value problems on time scales have been extensively investigated in simulating processes and the phenomena subject to short-time perturbations during their evolution. The material in this book is presented in highly readable, mathematically solid format. Many practical problems are illustrated displaying a wide variety of solution techniques. AUTHORS Svetlin G. Georgiev is a mathematician who has worked in various areas of the study. He currently focuses on harmonic analysis, functional analysis, partial differential equations, ordinary differential equations, Clifford and quaternion analysis, integral equations, and dynamic calculus on time scales. Khaled Zennir earned his PhD in mathematics in 2013 from Sidi Bel Abbès University, Algeria. In 2015, he received his highest diploma in Habilitation in mathematics from Constantine University, Algeria. He is currently assistant professor at Qassim University in the Kingdom of Saudi Arabia. His research interests lie in the subjects of nonlinear hyperbolic partial differential equations: global existence, blowup, and long-time behavior.

Book Boundary Value Problems on Time Scales  Volume I

Download or read book Boundary Value Problems on Time Scales Volume I written by Svetlin G. Georgiev and published by CRC Press. This book was released on 2021-10-15 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: Boundary Value Problems on Time Scales, Volume I is devoted to the qualitative theory of boundary value problems on time scales. Summarizing the most recent contributions in this area, it addresses a wide audience of specialists such as mathematicians, physicists, engineers and biologists. It can be used as a textbook at the graduate level and as a reference book for several disciplines. The text contains two volumes, both published by Chapman & Hall/CRC Press. Volume I presents boundary value problems for first- and second-order dynamic equations on time scales. Volume II investigates boundary value problems for three, four, and higher-order dynamic equations on time scales. Many results to differential equations carry over easily to corresponding results for difference equations, while other results seem to be totally different in nature. Because of these reasons, the theory of dynamic equations is an active area of research. The time-scale calculus can be applied to any field in which dynamic processes are described by discrete or continuous time models. The calculus of time scales has various applications involving noncontinuous domains such as certain bug populations, phytoremediation of metals, wound healing, maximization problems in economics, and traffic problems. Boundary value problems on time scales have been extensively investigated in simulating processes and the phenomena subject to short-time perturbations during their evolution. The material in this book is presented in highly readable, mathematically solid format. Many practical problems are illustrated displaying a wide variety of solution techniques. AUTHORS Svetlin G. Georgiev is a mathematician who has worked in various areas of the study. He currently focuses on harmonic analysis, functional analysis, partial differential equations, ordinary differential equations, Clifford and quaternion analysis, integral equations, and dynamic calculus on time scales. Khaled Zennir earned his PhD in mathematics in 2013 from Sidi Bel Abbès University, Algeria. In 2015, he received his highest diploma in Habilitation in mathematics from Constantine University, Algeria. He is currently assistant professor at Qassim University in the Kingdom of Saudi Arabia. His research interests lie in the subjects of nonlinear hyperbolic partial differential equations: global existence, blowup, and long-time behavior.

Book On a Pointwise Variational Principle of Elasticity and Mathematical Physics

Download or read book On a Pointwise Variational Principle of Elasticity and Mathematical Physics written by M. P. Stallybrass and published by . This book was released on 1963 with total page 41 pages. Available in PDF, EPUB and Kindle. Book excerpt: A method is discussed for constructing stationary functionals for the value of the solution of a linear boundary value problem, or of the derivatives of such a solution, at a specified, but arbitrary, point. The procedure is applicable to any boundary value problem governed by a linearly elliptic partial differential equation, or a system of such equations, for which global fundamental solutions exist. The technique is particularly suited to obtain approximate results in a class of mixed boundary value problems, involving a rigid body oscillating about various axes on the surface of an elastic half-space. The procedure is illustrated by constructing stationary expressions for the solution of a mixed boundary value problem associated with the Helmholtz equation and the class of elasto-dynamic problems referred to above. Method is applied to compute the displacement on the free surface of an elastic half-space due to the torsional oscillation of a finite disk situated on the surface. (Author).

Book Group Analysis of Differential Equations

Download or read book Group Analysis of Differential Equations written by L. V. Ovsiannikov and published by Academic Press. This book was released on 2014-05-10 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: Group Analysis of Differential Equations provides a systematic exposition of the theory of Lie groups and Lie algebras and its application to creating algorithms for solving the problems of the group analysis of differential equations. This text is organized into eight chapters. Chapters I to III describe the one-parameter group with its tangential field of vectors. The nonstandard treatment of the Banach Lie groups is reviewed in Chapter IV, including a discussion of the complete theory of Lie group transformations. Chapters V and VI cover the construction of partial solution classes for the given differential equation with a known admitted group. The theory of differential invariants that is developed on an infinitesimal basis is elaborated in Chapter VII. The last chapter outlines the ways in which the methods of group analysis are used in special issues involving differential equations. This publication is a good source for students and specialists concerned with areas in which ordinary and partial differential equations play an important role.

Book Approximation on a Rectangular Grid

Download or read book Approximation on a Rectangular Grid written by Solomon Grigorʹevich Mikhlin and published by Kluwer Academic Publishers. This book was released on 1979 with total page 244 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Boundary Element Methods with Applications to Nonlinear Problems

Download or read book Boundary Element Methods with Applications to Nonlinear Problems written by Goong Chen and published by Atlantis Studies in Mathematic. This book was released on 2010 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Boundary Element Methods have become a major numerical tool in scientific and engineering problem-solving, with particular applications to numerical computations and simulations of partial differential equations in engineering. Boundary Element Methods provides a rigorous and systematic account of the modern mathematical theory of Boundary Element Methods, including the requisite background on general partial, differential equation methods, Sobolev spaces, pseudo-differential and Fredholm operators and finite elements. It aims at the computation of many types of elliptic boundary value problems in potential theory, elasticity, wave propagation, and structural mechanics. Also presented are various methods and algorithms for nonlinear partial differential equations. This second edition has been fully revised and combines the mathematical rigour necessary for a full understanding of the subject, with extensive examples of applications illustrated with computer graphics. This book is intended as a textbook and reference for applied mathematicians, physical scientists and engineers at graduate and research level. It will be an invaluable sourcebook for all concerned with numerical modeling and the solution of partial differential equations.

Book Asymptotic Theory of Dynamic Boundary Value Problems in Irregular Domains

Download or read book Asymptotic Theory of Dynamic Boundary Value Problems in Irregular Domains written by Dmitrii Korikov and published by . This book was released on 2021 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book considers dynamic boundary value problems in domains with singularities of two types. The first type consists of "edges" of various dimensions on the boundary; in particular, polygons, cones, lenses, polyhedra are domains of this type. Singularities of the second type are "singularly perturbed edges" such as smoothed corners and edges and small holes. A domain with singularities of such type depends on a small parameter, whereas the boundary of the limit domain (as the parameter tends to zero) has usual edges, i.e. singularities of the first type. In the transition from the limit domain to the perturbed one, the boundary near a conical point or an edge becomes smooth, isolated singular points become small cavities, and so on. In an "irregular" domain with such singularities, problems of elastodynamics, electrodynamics and some other dynamic problems are discussed. The purpose is to describe the asymptotics of solutions near singularities of the boundary. The presented results and methods have a wide range of applications in mathematical physics and engineering. The book is addressed to specialists in mathematical physics, partial differential equations, and asymptotic methods.

Book Application of Finite Analytic Method to the Numerical Solution of Two point Boundary Value Problems of Ordinary Differential Equations

Download or read book Application of Finite Analytic Method to the Numerical Solution of Two point Boundary Value Problems of Ordinary Differential Equations written by Mohamad Zahed Sheikholeslami and published by . This book was released on 1980 with total page 162 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Applied Mechanics Reviews

Download or read book Applied Mechanics Reviews written by and published by . This book was released on 1972 with total page 568 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Introduction to Symmetry Analysis Paperback with CD ROM

Download or read book Introduction to Symmetry Analysis Paperback with CD ROM written by Brian Cantwell and published by Cambridge University Press. This book was released on 2002-09-23 with total page 660 pages. Available in PDF, EPUB and Kindle. Book excerpt: An introduction to symmetry analysis for graduate students in science, engineering and applied mathematics.

Book Chebyshev and Fourier Spectral Methods

Download or read book Chebyshev and Fourier Spectral Methods written by John P. Boyd and published by Courier Corporation. This book was released on 2001-12-03 with total page 690 pages. Available in PDF, EPUB and Kindle. Book excerpt: Completely revised text focuses on use of spectral methods to solve boundary value, eigenvalue, and time-dependent problems, but also covers Hermite, Laguerre, rational Chebyshev, sinc, and spherical harmonic functions, as well as cardinal functions, linear eigenvalue problems, matrix-solving methods, coordinate transformations, methods for unbounded intervals, spherical and cylindrical geometry, and much more. 7 Appendices. Glossary. Bibliography. Index. Over 160 text figures.

Book The Optimal Homotopy Asymptotic Method

Download or read book The Optimal Homotopy Asymptotic Method written by Vasile Marinca and published by Springer. This book was released on 2015-04-02 with total page 476 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book emphasizes in detail the applicability of the Optimal Homotopy Asymptotic Method to various engineering problems. It is a continuation of the book “Nonlinear Dynamical Systems in Engineering: Some Approximate Approaches”, published at Springer in 2011 and it contains a great amount of practical models from various fields of engineering such as classical and fluid mechanics, thermodynamics, nonlinear oscillations, electrical machines and so on. The main structure of the book consists of 5 chapters. The first chapter is introductory while the second chapter is devoted to a short history of the development of homotopy methods, including the basic ideas of the Optimal Homotopy Asymptotic Method. The last three chapters, from Chapter 3 to Chapter 5, are introducing three distinct alternatives of the Optimal Homotopy Asymptotic Method with illustrative applications to nonlinear dynamical systems. The third chapter deals with the first alternative of our approach with two iterations. Five applications are presented from fluid mechanics and nonlinear oscillations. The Chapter 4 presents the Optimal Homotopy Asymptotic Method with a single iteration and solving the linear equation on the first approximation. Here are treated 32 models from different fields of engineering such as fluid mechanics, thermodynamics, nonlinear damped and undamped oscillations, electrical machines and even from physics and biology. The last chapter is devoted to the Optimal Homotopy Asymptotic Method with a single iteration but without solving the equation in the first approximation.

Book Automated Solution of Differential Equations by the Finite Element Method

Download or read book Automated Solution of Differential Equations by the Finite Element Method written by Anders Logg and published by Springer Science & Business Media. This book was released on 2012-02-24 with total page 723 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a tutorial written by researchers and developers behind the FEniCS Project and explores an advanced, expressive approach to the development of mathematical software. The presentation spans mathematical background, software design and the use of FEniCS in applications. Theoretical aspects are complemented with computer code which is available as free/open source software. The book begins with a special introductory tutorial for beginners. Following are chapters in Part I addressing fundamental aspects of the approach to automating the creation of finite element solvers. Chapters in Part II address the design and implementation of the FEnicS software. Chapters in Part III present the application of FEniCS to a wide range of applications, including fluid flow, solid mechanics, electromagnetics and geophysics.