Download or read book Applications of Lie Group Analysis in Geophysical Fluid Dynamics written by Nail? Kha?rullovich Ibragimov and published by World Scientific. This book was released on 2011 with total page 228 pages. Available in PDF, EPUB and Kindle. Book excerpt: Quickly learn essential inventor tools and techniques This full-color Autodesk Official Press guide will help you quickly learn the powerful manufacturing software′s core features and functions. Thom Tremblay, an Autodesk Certified Instructor, uses concise, straightforward explanations and real-world, hands-on exercises to help you become productive with Inventor. Full-color screenshots illustrate tutorial steps, and chapters conclude with a related and more open-ended project to further reinforce the chapter′s lessons. Based on the very real-world task of designing tools and a toolbox to house them, the book demonstrates creating 2D drawings from 3D data, modeling parts, combining parts into assemblies, annotating drawings, using advanced assembly tools, working with sheet metal, presenting designs, and more. Full-color screenshots illustrate the steps, and additional files are available for download so you can compare your results with those of professionals. You′ll also get information to help you prepare for the Inventor certification exams. Introduces new users to the software with real-world projects, hands-on tutorials, and full-color illustrations Begins each chapter with a quick discussion of concepts and learning goals and then moves into approachable, hands-on exercises Covers the interface and foundational concepts, modeling parts, combining them into assemblies building with the frame generator, using weldments Includes material to help you prepare for the Inventor certification exams Autodesk Inventor 2014 Essentials provides the information you need to quickly become proficient with the powerful 3D mechanical design software.
Download or read book Geophysical Fluid Dynamics II written by Emin Özsoy and published by Springer Nature. This book was released on 2021-08-13 with total page 332 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book develops a fundamental understanding of geophysical fluid dynamics based on a mathematical description of the flows of inhomogeneous fluids. It covers these topics: 1. development of the equations of motion for an inhomogeneous fluid 2. review of thermodynamics 3. thermodynamic and kinetic energy equations 4. equations of state for the atmosphere and the ocean, salt, and moisture effects 5. concepts of potential temperature and potential density 6. Boussinesq and quasi-geostrophic approximations 7. conservation equations for vorticity, mechanical and thermal energy instability theories, internal waves, mixing, convection, double-diffusion, stratified turbulence, fronts, intrusions, gravity currents Graduate students will be able to learn and apply the basic theory of geophysical fluid dynamics of inhomogeneous fluids on a rotating earth, including: 1. derivation of the governing equations for a stratified fluid starting from basic principles of physics 2. review of thermodynamics, equations of state, isothermal, adiabatic, isentropic changes 3. scaling of the equations, Boussinesq approximation, applied to the ocean and the atmosphere 4. examples of stratified flows at geophysical scales, steady and unsteady motions, inertia-gravity internal waves, quasi-geostrophic theory 5. vorticity and energy conservation in stratified fluids 6.boundary layer convection in stratified containers and basins
Download or read book Symmetries and Integrability of Difference Equations written by Decio Levi and published by Springer. This book was released on 2017-06-30 with total page 441 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book shows how Lie group and integrability techniques, originally developed for differential equations, have been adapted to the case of difference equations. Difference equations are playing an increasingly important role in the natural sciences. Indeed, many phenomena are inherently discrete and thus naturally described by difference equations. More fundamentally, in subatomic physics, space-time may actually be discrete. Differential equations would then just be approximations of more basic discrete ones. Moreover, when using differential equations to analyze continuous processes, it is often necessary to resort to numerical methods. This always involves a discretization of the differential equations involved, thus replacing them by difference ones. Each of the nine peer-reviewed chapters in this volume serves as a self-contained treatment of a topic, containing introductory material as well as the latest research results and exercises. Each chapter is presented by one or more early career researchers in the specific field of their expertise and, in turn, written for early career researchers. As a survey of the current state of the art, this book will serve as a valuable reference and is particularly well suited as an introduction to the field of symmetries and integrability of difference equations. Therefore, the book will be welcomed by advanced undergraduate and graduate students as well as by more advanced researchers.
Download or read book Fractional Calculus Models And Numerical Methods written by Dumitru Baleanu and published by World Scientific. This book was released on 2012-01-27 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: The subject of fractional calculus and its applications (that is, convolution-type pseudo-differential operators including integrals and derivatives of any arbitrary real or complex order) has gained considerable popularity and importance during the past three decades or so, mainly due to its applications in diverse fields of science and engineering. These operators have been used to model problems with anomalous dynamics, however, they also are an effective tool as filters and controllers, and they can be applied to write complicated functions in terms of fractional integrals or derivatives of elementary functions, and so on.This book will give readers the possibility of finding very important mathematical tools for working with fractional models and solving fractional differential equations, such as a generalization of Stirling numbers in the framework of fractional calculus and a set of efficient numerical methods. Moreover, we will introduce some applied topics, in particular fractional variational methods which are used in physics, engineering or economics. We will also discuss the relationship between semi-Markov continuous-time random walks and the space-time fractional diffusion equation, which generalizes the usual theory relating random walks to the diffusion equation. These methods can be applied in finance, to model tick-by-tick (log)-price fluctuations, in insurance theory, to study ruin, as well as in macroeconomics as prototypical growth models.All these topics are complementary to what is dealt with in existing books on fractional calculus and its applications. This book was written with a trade-off in mind between full mathematical rigor and the needs of readers coming from different applied areas of science and engineering. In particular, the numerical methods listed in the book are presented in a readily accessible way that immediately allows the readers to implement them on a computer in a programming language of their choice. Numerical code is also provided.
Download or read book Fractional Calculus Models And Numerical Methods Second Edition written by Juan J Trujillo and published by World Scientific. This book was released on 2016-09-15 with total page 477 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book will give readers the possibility of finding very important mathematical tools for working with fractional models and solving fractional differential equations, such as a generalization of Stirling numbers in the framework of fractional calculus and a set of efficient numerical methods. Moreover, we will introduce some applied topics, in particular fractional variational methods which are used in physics, engineering or economics. We will also discuss the relationship between semi-Markov continuous-time random walks and the space-time fractional diffusion equation, which generalizes the usual theory relating random walks to the diffusion equation. These methods can be applied in finance, to model tick-by-tick (log)-price fluctuations, in insurance theory, to study ruin, as well as in macroeconomics as prototypical growth models.All these topics are complementary to what is dealt with in existing books on fractional calculus and its applications. This book will keep in mind the trade-off between full mathematical rigor and the needs of readers coming from different applied areas of science and engineering. In particular, the numerical methods listed in the book are presented in a readily accessible way that immediately allows the readers to implement them on a computer in a programming language of their choice.The second edition of the book has been expanded and now includes a discussion of additional, newly developed numerical methods for fractional calculus and a chapter on the application of fractional calculus for modeling processes in the life sciences.
Download or read book Imperfect Bifurcation in Structures and Materials written by Kiyohiro Ikeda and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 426 pages. Available in PDF, EPUB and Kindle. Book excerpt: Most physical systems lose or gain stability through bifurcation behavior. This book explains a series of experimentally found bifurcation phenomena by means of the methods of static bifurcation theory.
Download or read book Nonlinear Boundary Value Problems in Science and Engineering written by C. Rogers and published by Academic Press. This book was released on 1989-11-14 with total page 433 pages. Available in PDF, EPUB and Kindle. Book excerpt: Overall, our object has been to provide an applications-oriented text that is reasonably self-contained. It has been used as the basis for a graduate-level course both at the University of Waterloo and at the Centro Studie Applicazioni in Tecnologie Avante, Bari, Italy. The text is aimed, in the main, at applied mathematicians with a strong interest in physical applications or at engineers working in theoretical mechanics.
Download or read book Scientific and Technical Aerospace Reports written by and published by . This book was released on 1977 with total page 1006 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Advances in Nonlinear Geosciences written by Anastasios A. Tsonis and published by Springer. This book was released on 2017-10-13 with total page 708 pages. Available in PDF, EPUB and Kindle. Book excerpt: Advances in Nonlinear Geosciences is a set of contributions from the participants of “30 Years of Nonlinear Dynamics” held July 3-8, 2016 in Rhodes, Greece as part of the Aegean Conferences, as well as from several other experts in the field who could not attend the meeting. The volume brings together up-to-date research from the atmospheric sciences, hydrology, geology, and other areas of geosciences and presents the new advances made in the last 10 years. Topics include chaos synchronization, topological data analysis, new insights on fractals, multifractals and stochasticity, climate dynamics, extreme events, complexity, and causality, among other topics.
Download or read book Classification and Identification of Lie Algebras written by Libor Šnob and published by American Mathematical Soc.. This book was released on 2017-04-05 with total page 321 pages. Available in PDF, EPUB and Kindle. Book excerpt: The purpose of this book is to serve as a tool for researchers and practitioners who apply Lie algebras and Lie groups to solve problems arising in science and engineering. The authors address the problem of expressing a Lie algebra obtained in some arbitrary basis in a more suitable basis in which all essential features of the Lie algebra are directly visible. This includes algorithms accomplishing decomposition into a direct sum, identification of the radical and the Levi decomposition, and the computation of the nilradical and of the Casimir invariants. Examples are given for each algorithm. For low-dimensional Lie algebras this makes it possible to identify the given Lie algebra completely. The authors provide a representative list of all Lie algebras of dimension less or equal to 6 together with their important properties, including their Casimir invariants. The list is ordered in a way to make identification easy, using only basis independent properties of the Lie algebras. They also describe certain classes of nilpotent and solvable Lie algebras of arbitrary finite dimensions for which complete or partial classification exists and discuss in detail their construction and properties. The book is based on material that was previously dispersed in journal articles, many of them written by one or both of the authors together with their collaborators. The reader of this book should be familiar with Lie algebra theory at an introductory level.
Download or read book Nonlinear Science And Complexity Proceedings Of The Conference written by Albert C J Luo and published by World Scientific. This book was released on 2006-12-09 with total page 556 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume provides useful tools in Lie group analysis to solve nonlinear partial differential equations. Many of important issues in nonlinear wave dynamics and nonlinear fluid mechanics are presented: Homotopy techniques are used to obtain analytical solutions; fundamental problems and theories in classic and quantum dynamical systems are discussed; and numerous interesting results about dynamics and vibration in sensor and smart systems are presented. Interval computation and nonlinear modeling in dynamics and control are also briefly included.
Download or read book Geometric Theory of Incompressible Flows with Applications to Fluid Dynamics written by Tian Ma and published by American Mathematical Soc.. This book was released on 2005 with total page 248 pages. Available in PDF, EPUB and Kindle. Book excerpt: This monograph presents a geometric theory for incompressible flow and its applications to fluid dynamics. The main objective is to study the stability and transitions of the structure of incompressible flows and its applications to fluid dynamics and geophysical fluid dynamics. The development of the theory and its applications goes well beyond its original motivation of the study of oceanic dynamics. The authors present a substantial advance in the use of geometric and topological methods to analyze and classify incompressible fluid flows. The approach introduces genuinely innovative ideas to the study of the partial differential equations of fluid dynamics. One particularly useful development is a rigorous theory for boundary layer separation of incompressible fluids. The study of incompressible flows has two major interconnected parts. The first is the development of a global geometric theory of divergence-free fields on general two-dimensional compact manifolds. The second is the study of the structure of velocity fields for two-dimensional incompressible fluid flows governed by the Navier-Stokes equations or the Euler equations. Motivated by the study of problems in geophysical fluid dynamics, the program of research in this book seeks to develop a new mathematical theory, maintaining close links to physics along the way. In return, the theory is applied to physical problems, with more problems yet to be explored. The material is suitable for researchers and advanced graduate students interested in nonlinear PDEs and fluid dynamics.
Download or read book Lie Group Analysis of Differential Equations written by Ranis Ibragimov and published by Walter de Gruyter GmbH & Co KG. This book was released on 2024-03-04 with total page 372 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is focused on physical interpretation and visualization of the obtained invariant solutions for nonlinear mathematical modeling of atmospheric and ocean waves. This volume represents a unique blend of analytical and numerical methods complemented by the author's developments in ocean and atmospheric sciences and it is meant for researchers and graduate students interested in applied mathematics and mathematical modeling.
Download or read book Ergodic Theory Analysis and Efficient Simulation of Dynamical Systems written by Bernold Fiedler and published by Springer Science & Business Media. This book was released on 2001 with total page 840 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book summarizes and highlights progress in Dynamical Systems achieved during six years of the German Priority Research Program "Ergotic Theory, Analysis, and Efficient Simulation of Dynamical Systems", funded by the Deutsche Forschungsgemeinschaft (DFG). The three fundamental topics of large time behavior, dimension, and measure are tackled with by a rich circle of uncompromisingly rigorous mathematical concepts. The range of applied issues comprises such diverse areas as crystallization and dendrite growth, the dynamo effect, efficient simulation of biomolecules, fluid dynamics and reacting flows, mechanical problems involving friction, population biology, the spread of infectious diseases, and quantum chaos. The surveys in the book are addressed to experts and non-experts in the mathematical community alike. In addition they intend to convey the significance of the results for applications fair into the neighboring disciplines of Science.
Download or read book Magnetohydrodynamics and Fluid Dynamics Action Principles and Conservation Laws written by Gary Webb and published by Springer. This book was released on 2018-02-05 with total page 306 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text focuses on conservation laws in magnetohydrodynamics, gasdynamics and hydrodynamics. A grasp of new conservation laws is essential in fusion and space plasmas, as well as in geophysical fluid dynamics; they can be used to test numerical codes, or to reveal new aspects of the underlying physics, e.g., by identifying the time history of the fluid elements as an important key to understanding fluid vorticity or in investigating the stability of steady flows. The ten Galilean Lie point symmetries of the fundamental action discussed in this book give rise to the conservation of energy, momentum, angular momentum and center of mass conservation laws via Noether’s first theorem. The advected invariants are related to fluid relabeling symmetries – so-called diffeomorphisms associated with the Lagrangian map – and are obtained by applying the Euler-Poincare approach to Noether’s second theorem. The book discusses several variants of helicity including kinetic helicity, cross helicity, magnetic helicity, Ertels’ theorem and potential vorticity, the Hollman invariant, and the Godbillon Vey invariant. The book develops the non-canonical Hamiltonian approach to MHD using the non-canonical Poisson bracket, while also refining the multisymplectic approach to ideal MHD and obtaining novel nonlocal conservation laws. It also briefly discusses Anco and Bluman’s direct method for deriving conservation laws. A range of examples is used to illustrate topological invariants in MHD and fluid dynamics, including the Hopf invariant, the Calugareanu invariant, the Taylor magnetic helicity reconnection hypothesis for magnetic fields in highly conducting plasmas, and the magnetic helicity of Alfvén simple waves, MHD topological solitons, and the Parker Archimedean spiral magnetic field. The Lagrangian map is used to obtain a class of solutions for incompressible MHD. The Aharonov-Bohm interpretation of magnetic helicity and cross helicity is discussed. In closing, examples of magnetosonic N-waves are used to illustrate the role of the wave number and group velocity concepts for MHD waves. This self-contained and pedagogical guide to the fundamentals will benefit postgraduate-level newcomers and seasoned researchers alike.
Download or read book Grants and Awards written by National Science Foundation (U.S.) and published by . This book was released on with total page 278 pages. Available in PDF, EPUB and Kindle. Book excerpt:
Download or read book Which University written by and published by . This book was released on 1975 with total page 1052 pages. Available in PDF, EPUB and Kindle. Book excerpt: