Download or read book Research Anthology on Artificial Neural Network Applications written by Management Association, Information Resources and published by IGI Global. This book was released on 2021-07-16 with total page 1575 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial neural networks (ANNs) present many benefits in analyzing complex data in a proficient manner. As an effective and efficient problem-solving method, ANNs are incredibly useful in many different fields. From education to medicine and banking to engineering, artificial neural networks are a growing phenomenon as more realize the plethora of uses and benefits they provide. Due to their complexity, it is vital for researchers to understand ANN capabilities in various fields. The Research Anthology on Artificial Neural Network Applications covers critical topics related to artificial neural networks and their multitude of applications in a number of diverse areas including medicine, finance, operations research, business, social media, security, and more. Covering everything from the applications and uses of artificial neural networks to deep learning and non-linear problems, this book is ideal for computer scientists, IT specialists, data scientists, technologists, business owners, engineers, government agencies, researchers, academicians, and students, as well as anyone who is interested in learning more about how artificial neural networks can be used across a wide range of fields.
Download or read book Applications of Artificial Neural Networks for Nonlinear Data written by Patel, Hiral Ashil and published by IGI Global. This book was released on 2020-09-25 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: Processing information and analyzing data efficiently and effectively is crucial for any company that wishes to stay competitive in its respective market. Nonlinear data presents new challenges to organizations, however, due to its complexity and unpredictability. The only technology that can properly handle this form of data is artificial neural networks. These modeling systems present a high level of benefits in analyzing complex data in a proficient manner, yet considerable research on the specific applications of these intelligent components is significantly deficient. Applications of Artificial Neural Networks for Nonlinear Data is a collection of innovative research on the contemporary nature of artificial neural networks and their specific implementations within data analysis. While highlighting topics including propagation functions, optimization techniques, and learning methodologies, this book is ideally designed for researchers, statisticians, academicians, developers, scientists, practitioners, students, and educators seeking current research on the use of artificial neural networks in diagnosing and solving nonparametric problems.
Download or read book Artificial Higher Order Neural Networks for Computer Science and Engineering Trends for Emerging Applications written by Zhang, Ming and published by IGI Global. This book was released on 2010-02-28 with total page 660 pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book introduces and explains Higher Order Neural Networks (HONNs) to people working in the fields of computer science and computer engineering, and how to use HONNS in these areas"--Provided by publisher.
Download or read book Artificial Neural Networks for Engineering Applications written by Alma Y Alanis and published by Academic Press. This book was released on 2019-02-13 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Neural Networks for Engineering Applications presents current trends for the solution of complex engineering problems that cannot be solved through conventional methods. The proposed methodologies can be applied to modeling, pattern recognition, classification, forecasting, estimation, and more. Readers will find different methodologies to solve various problems, including complex nonlinear systems, cellular computational networks, waste water treatment, attack detection on cyber-physical systems, control of UAVs, biomechanical and biomedical systems, time series forecasting, biofuels, and more. Besides the real-time implementations, the book contains all the theory required to use the proposed methodologies for different applications.
Download or read book Process Neural Networks written by Xingui He and published by Springer Science & Business Media. This book was released on 2010-07-05 with total page 240 pages. Available in PDF, EPUB and Kindle. Book excerpt: For the first time, this book sets forth the concept and model for a process neural network. You’ll discover how a process neural network expands the mapping relationship between the input and output of traditional neural networks and greatly enhances the expression capability of artificial neural networks. Detailed illustrations help you visualize information processing flow and the mapping relationship between inputs and outputs.
Download or read book Neural Networks written by Doug Alexander and published by . This book was released on 2020 with total page 232 pages. Available in PDF, EPUB and Kindle. Book excerpt: "With respect to the ever-increasing developments in artificial intelligence and artificial neural network applications in different scopes such as medicine, industry, biology, history, military industries, recognition science, space, machine learning and etc., Neural Networks: History and Applications first discusses a comprehensive investigation of artificial neural networks. Next, the authors focus on studies carried out with the artificial neural network approach on the emotion recognition from 2D facial expressions between 2009 and 2019. The major objective of this study is to review, identify, evaluate and analyze the performance of artificial neural network models in emotion recognition applications. This compilation also proposes a simple nonlinear approach for dipole mode index prediction where past values of dipole mode index were used as inputs, and future values were predicted by artificial neural networks. The study was also conducted for seasonal dipole mode index prediction because the dipole mode index is more prominent in the Sep-Oct-Nov season. A subsequent study focuses on how mammography has a high false negative and false positive rate. As such, computer-aided diagnosis systems have been commercialized to help in micro-calcification detection and malignancy differentiation. Yet, little has been explored in differentiating breast cancers with artificial neural networks, one example of computer-aided diagnosis systems. The authors aim to bridge this gap in research. The penultimate chapter reviews the general conditions under which synaptic plasticity most effectively takes place to support the supervised learning of a precise temporal code. Then, the accuracy of each plasticity rule with respect to its temporal encoding precision is examined, and the maximum number of input patterns it can memorize using the precise timings of individual spikes as an indicator of storage capacity in different control and recognition tasks is explored. In closing, a case study is presented centered on an intelligent decision support system that is built on a neural network model based on the Encog machine learning framework to predict cryptocurrency close prices"--
Download or read book Artificial Neural Networks written by David J. Livingstone and published by Humana Press. This book was released on 2011-10-09 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book, international experts report the history of the application of ANN to chemical and biological problems, provide a guide to network architectures, training and the extraction of rules from trained networks, and cover many cutting-edge examples of the application of ANN to chemistry and biology. Methods involving the mapping and interpretation of Infra Red spectra and modelling environmental toxicology are included. This book is an excellent guide to this exciting field.
Download or read book Applied Artificial Neural Network Methods For Engineers And Scientists Solving Algebraic Equations written by Snehashish Chakraverty and published by World Scientific. This book was released on 2021-01-26 with total page 192 pages. Available in PDF, EPUB and Kindle. Book excerpt: The aim of this book is to handle different application problems of science and engineering using expert Artificial Neural Network (ANN). As such, the book starts with basics of ANN along with different mathematical preliminaries with respect to algebraic equations. Then it addresses ANN based methods for solving different algebraic equations viz. polynomial equations, diophantine equations, transcendental equations, system of linear and nonlinear equations, eigenvalue problems etc. which are the basic equations to handle the application problems mentioned in the content of the book. Although there exist various methods to handle these problems, but sometimes those may be problem dependent and may fail to give a converge solution with particular discretization. Accordingly, ANN based methods have been addressed here to solve these problems. Detail ANN architecture with step by step procedure and algorithm have been included. Different example problems are solved with respect to various application and mathematical problems. Convergence plots and/or convergence tables of the solutions are depicted to show the efficacy of these methods. It is worth mentioning that various application problems viz. Bakery problem, Power electronics applications, Pole placement, Electrical Network Analysis, Structural engineering problem etc. have been solved using the ANN based methods.
Download or read book Artificial Neural Networks written by Joao Luis Garcia Rosa and published by BoD – Books on Demand. This book was released on 2016-10-19 with total page 416 pages. Available in PDF, EPUB and Kindle. Book excerpt: The idea of simulating the brain was the goal of many pioneering works in Artificial Intelligence. The brain has been seen as a neural network, or a set of nodes, or neurons, connected by communication lines. Currently, there has been increasing interest in the use of neural network models. This book contains chapters on basic concepts of artificial neural networks, recent connectionist architectures and several successful applications in various fields of knowledge, from assisted speech therapy to remote sensing of hydrological parameters, from fabric defect classification to application in civil engineering. This is a current book on Artificial Neural Networks and Applications, bringing recent advances in the area to the reader interested in this always-evolving machine learning technique.
Download or read book State of the Art in Neural Networks and Their Applications written by Ayman S. El-Baz and published by Academic Press. This book was released on 2021-07-21 with total page 326 pages. Available in PDF, EPUB and Kindle. Book excerpt: State of the Art in Neural Networks and Their Applications presents the latest advances in artificial neural networks and their applications across a wide range of clinical diagnoses. Advances in the role of machine learning, artificial intelligence, deep learning, cognitive image processing and suitable data analytics useful for clinical diagnosis and research applications are covered, including relevant case studies. The application of Neural Network, Artificial Intelligence, and Machine Learning methods in biomedical image analysis have resulted in the development of computer-aided diagnostic (CAD) systems that aim towards the automatic early detection of several severe diseases. State of the Art in Neural Networks and Their Applications is presented in two volumes. Volume 1 covers the state-of-the-art deep learning approaches for the detection of renal, retinal, breast, skin, and dental abnormalities and more. - Includes applications of neural networks, AI, machine learning, and deep learning techniques to a variety of imaging technologies - Provides in-depth technical coverage of computer-aided diagnosis (CAD), with coverage of computer-aided classification, Unified Deep Learning Frameworks, mammography, fundus imaging, optical coherence tomography, cryo-electron tomography, 3D MRI, CT, and more - Covers deep learning for several medical conditions including renal, retinal, breast, skin, and dental abnormalities, Medical Image Analysis, as well as detection, segmentation, and classification via AI
Download or read book Artificial Intelligence in the Age of Neural Networks and Brain Computing written by Robert Kozma and published by Academic Press. This book was released on 2023-10-11 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: Artificial Intelligence in the Age of Neural Networks and Brain Computing, Second Edition demonstrates that present disruptive implications and applications of AI is a development of the unique attributes of neural networks, mainly machine learning, distributed architectures, massive parallel processing, black-box inference, intrinsic nonlinearity, and smart autonomous search engines. The book covers the major basic ideas of "brain-like computing" behind AI, provides a framework to deep learning, and launches novel and intriguing paradigms as possible future alternatives. The present success of AI-based commercial products proposed by top industry leaders, such as Google, IBM, Microsoft, Intel, and Amazon, can be interpreted using the perspective presented in this book by viewing the co-existence of a successful synergism among what is referred to as computational intelligence, natural intelligence, brain computing, and neural engineering. The new edition has been updated to include major new advances in the field, including many new chapters. - Developed from the 30th anniversary of the International Neural Network Society (INNS) and the 2017 International Joint Conference on Neural Networks (IJCNN - Authored by top experts, global field pioneers, and researchers working on cutting-edge applications in signal processing, speech recognition, games, adaptive control and decision-making - Edited by high-level academics and researchers in intelligent systems and neural networks - Includes all new chapters, including topics such as Frontiers in Recurrent Neural Network Research; Big Science, Team Science, Open Science for Neuroscience; A Model-Based Approach for Bridging Scales of Cortical Activity; A Cognitive Architecture for Object Recognition in Video; How Brain Architecture Leads to Abstract Thought; Deep Learning-Based Speech Separation and Advances in AI, Neural Networks
Download or read book Artificial Neural Network Applications in Business and Engineering written by Do, Quang Hung and published by IGI Global. This book was released on 2021-01-08 with total page 275 pages. Available in PDF, EPUB and Kindle. Book excerpt: In today’s modernized market, various disciplines continue to search for universally functional technologies that improve upon traditional processes. Artificial neural networks are a set of statistical modeling tools that are capable of processing nonlinear data with strong accuracy. Due to their complexity, utilizing their potential was previously seen as a challenge. However, with the development of artificial intelligence, this technology has proven to be an effective and efficient problem-solving method. Artificial Neural Network Applications in Business and Engineering is an essential reference source that illustrates recent advancements of artificial neural networks in various professional fields, accompanied by specific case studies and practical examples. Featuring research on topics such as training algorithms, transportation, and computer security, this book is ideally designed for researchers, students, developers, managers, engineers, academicians, industrialists, policymakers, and educators seeking coverage on modern trends in artificial neural networks and their real-world implementations.
Download or read book Biomedical and Business Applications Using Artificial Neural Networks and Machine Learning written by Richard Segall and published by Engineering Science Reference. This book was released on 2021-11 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book covers applications of artificial neural networks (ANN) and machine learning (ML) aspects of artificial intelligence to applications to the biomedical and business world including their interface to applications for screening for diseases to applications to large-scale credit card purchasing patterns"--
Download or read book Artificial Neural Networks in Hydrology written by R.S. Govindaraju and published by Springer Science & Business Media. This book was released on 2013-03-09 with total page 338 pages. Available in PDF, EPUB and Kindle. Book excerpt: R. S. GOVINDARAJU and ARAMACHANDRA RAO School of Civil Engineering Purdue University West Lafayette, IN. , USA Background and Motivation The basic notion of artificial neural networks (ANNs), as we understand them today, was perhaps first formalized by McCulloch and Pitts (1943) in their model of an artificial neuron. Research in this field remained somewhat dormant in the early years, perhaps because of the limited capabilities of this method and because there was no clear indication of its potential uses. However, interest in this area picked up momentum in a dramatic fashion with the works of Hopfield (1982) and Rumelhart et al. (1986). Not only did these studies place artificial neural networks on a firmer mathematical footing, but also opened the dOOf to a host of potential applications for this computational tool. Consequently, neural network computing has progressed rapidly along all fronts: theoretical development of different learning algorithms, computing capabilities, and applications to diverse areas from neurophysiology to the stock market. . Initial studies on artificial neural networks were prompted by adesire to have computers mimic human learning. As a result, the jargon associated with the technical literature on this subject is replete with expressions such as excitation and inhibition of neurons, strength of synaptic connections, learning rates, training, and network experience. ANNs have also been referred to as neurocomputers by people who want to preserve this analogy.
Download or read book Artificial Neural Networks written by Gayle Cain and published by Nova Science Publishers. This book was released on 2016-12 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This current book provides new research on artificial neural networks (ANNs). Topics discussed include the application of ANNs in chemistry and chemical engineering fields; the application of ANNs in the prediction of biodiesel fuel properties from fatty acid constituents; the use of ANNs for solar radiation estimation; the use of in silico methods to design and evaluate skin UV filters; a practical model based on the multilayer perceptron neural network (MLP) approach to predict the milling tool flank wear in a regular cut, as well as entry cut and exit cut, of a milling tool; parameter extraction of small-signal and noise models of microwave transistors based on ANNs; and the application of ANNs to deep-learning and predictive analysis in semantic TCM telemedicine systems.
Download or read book Neural Networks Computational Models and Applications written by Huajin Tang and published by Springer Science & Business Media. This book was released on 2007-03-12 with total page 310 pages. Available in PDF, EPUB and Kindle. Book excerpt: Neural Networks: Computational Models and Applications presents important theoretical and practical issues in neural networks, including the learning algorithms of feed-forward neural networks, various dynamical properties of recurrent neural networks, winner-take-all networks and their applications in broad manifolds of computational intelligence: pattern recognition, uniform approximation, constrained optimization, NP-hard problems, and image segmentation. The book offers a compact, insightful understanding of the broad and rapidly growing neural networks domain.
Download or read book The Application of Neural Networks in the Earth System Sciences written by Vladimir M. Krasnopolsky and published by Springer Science & Business Media. This book was released on 2013-06-14 with total page 205 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book brings together a representative set of Earth System Science (ESS) applications of the neural network (NN) technique. It examines a progression of atmospheric and oceanic problems, which, from the mathematical point of view, can be formulated as complex, multidimensional, and nonlinear mappings. It is shown that these problems can be solved utilizing a particular type of NN – the multilayer perceptron (MLP). This type of NN applications covers the majority of NN applications developed in ESSs such as meteorology, oceanography, atmospheric and oceanic satellite remote sensing, numerical weather prediction, and climate studies. The major properties of the mappings and MLP NNs are formulated and discussed. Also, the book presents basic background for each introduced application and provides an extensive set of references. “This is an excellent book to learn how to apply artificial neural network methods to earth system sciences. The author, Dr. Vladimir Krasnopolsky, is a universally recognized master in this field. With his vast knowledge and experience, he carefully guides the reader through a broad variety of problems found in the earth system sciences where neural network methods can be applied fruitfully. (...) The broad range of topics covered in this book ensures that researchers/graduate students from many fields (...) will find it an invaluable guide to neural network methods.” (Prof. William W. Hsieh, University of British Columbia, Vancouver, Canada) “Vladimir Krasnopolsky has been the “founding father” of applying computation intelligence methods to environmental science; (...) Dr. Krasnopolsky has created a masterful exposition of a young, yet maturing field that promises to advance a deeper understanding of best modeling practices in environmental science.” (Dr. Sue Ellen Haupt, National Center for Atmospheric Research, Boulder, USA) “Vladimir Krasnopolsky has written an important and wonderful book on applications of neural networks to replace complex and expensive computational algorithms within Earth System Science models. He is uniquely qualified to write this book, since he has been a true pioneer with regard to many of these applications. (...) Many other examples of creative emulations will inspire not just readers interested in the Earth Sciences, but any other modeling practitioner (...) to address both theoretical and practical complex problems that may (or will!) arise in a complex system." ” (Prof. Eugenia Kalnay, University of Maryland, USA)