Download or read book Statistical Parametric Mapping The Analysis of Functional Brain Images written by William D. Penny and published by Elsevier. This book was released on 2011-04-28 with total page 689 pages. Available in PDF, EPUB and Kindle. Book excerpt: In an age where the amount of data collected from brain imaging is increasing constantly, it is of critical importance to analyse those data within an accepted framework to ensure proper integration and comparison of the information collected. This book describes the ideas and procedures that underlie the analysis of signals produced by the brain. The aim is to understand how the brain works, in terms of its functional architecture and dynamics. This book provides the background and methodology for the analysis of all types of brain imaging data, from functional magnetic resonance imaging to magnetoencephalography. Critically, Statistical Parametric Mapping provides a widely accepted conceptual framework which allows treatment of all these different modalities. This rests on an understanding of the brain's functional anatomy and the way that measured signals are caused experimentally. The book takes the reader from the basic concepts underlying the analysis of neuroimaging data to cutting edge approaches that would be difficult to find in any other source. Critically, the material is presented in an incremental way so that the reader can understand the precedents for each new development. This book will be particularly useful to neuroscientists engaged in any form of brain mapping; who have to contend with the real-world problems of data analysis and understanding the techniques they are using. It is primarily a scientific treatment and a didactic introduction to the analysis of brain imaging data. It can be used as both a textbook for students and scientists starting to use the techniques, as well as a reference for practicing neuroscientists. The book also serves as a companion to the software packages that have been developed for brain imaging data analysis. - An essential reference and companion for users of the SPM software - Provides a complete description of the concepts and procedures entailed by the analysis of brain images - Offers full didactic treatment of the basic mathematics behind the analysis of brain imaging data - Stands as a compendium of all the advances in neuroimaging data analysis over the past decade - Adopts an easy to understand and incremental approach that takes the reader from basic statistics to state of the art approaches such as Variational Bayes - Structured treatment of data analysis issues that links different modalities and models - Includes a series of appendices and tutorial-style chapters that makes even the most sophisticated approaches accessible
- Author : Christakis Constantinides
- Publisher : BoD – Books on Demand
- Release : 2016-10-26
- ISBN : 9535127225
- Pages : 118 pages
Assessment of Cellular and Organ Function and Dysfunction using Direct and Derived MRI Methodologies
Download or read book Assessment of Cellular and Organ Function and Dysfunction using Direct and Derived MRI Methodologies written by Christakis Constantinides and published by BoD – Books on Demand. This book was released on 2016-10-26 with total page 118 pages. Available in PDF, EPUB and Kindle. Book excerpt: Despite the tremendous growth in the field of magnetic resonance imaging (MRI) evidenced in the initial phases of its development in the early twentieth century, scientific focus has shifted in recent years toward the study of physiology and pathophysiology that span the spatial scales of the molecule, cell, tissue, and organ. Intensified research activities over the past 15 years have justified efforts toward molecular and cellular imaging, dual-modality imaging systems, real-time acquisitions, dedicated image processing techniques and applications, and the critical evaluation of their potential translational value for use in the clinic. The integrative focus on molecular-cellular-tissue-organ function and dysfunction has taken a primary role in modern, personalized medicine, and it is envisaged to continue to do so, as accumulated knowledge from basic and clinical science work continues to elucidate molecular, cellular, and physiological/pathophysiological pathways and mechanisms. In this scientific effort, MRI continues to play a critical and synergistic role from the perspectives of basic science, diagnosis, and clinical interventional/therapeutic approaches. Within the realm of the current role of MRI in modern medicine, this book summarizes state-of-the-art direct and derived MRI methodologies and approaches as applied toward the assessment of cellular and organ function and dysfunction. The contributions in this effort are not excessive but few, comprehensive, and distinguished and of high quality. The topic areas can be generalized to find applications in other scientific areas and span both brain and cardiac applications, extending interest to wider audiences.
Download or read book Bayesian Biostatistics written by Emmanuel Lesaffre and published by John Wiley & Sons. This book was released on 2012-08-13 with total page 544 pages. Available in PDF, EPUB and Kindle. Book excerpt: The growth of biostatistics has been phenomenal in recent years and has been marked by considerable technical innovation in both methodology and computational practicality. One area that has experienced significant growth is Bayesian methods. The growing use of Bayesian methodology has taken place partly due to an increasing number of practitioners valuing the Bayesian paradigm as matching that of scientific discovery. In addition, computational advances have allowed for more complex models to be fitted routinely to realistic data sets. Through examples, exercises and a combination of introductory and more advanced chapters, this book provides an invaluable understanding of the complex world of biomedical statistics illustrated via a diverse range of applications taken from epidemiology, exploratory clinical studies, health promotion studies, image analysis and clinical trials. Key Features: Provides an authoritative account of Bayesian methodology, from its most basic elements to its practical implementation, with an emphasis on healthcare techniques. Contains introductory explanations of Bayesian principles common to all areas of application. Presents clear and concise examples in biostatistics applications such as clinical trials, longitudinal studies, bioassay, survival, image analysis and bioinformatics. Illustrated throughout with examples using software including WinBUGS, OpenBUGS, SAS and various dedicated R programs. Highlights the differences between the Bayesian and classical approaches. Supported by an accompanying website hosting free software and case study guides. Bayesian Biostatistics introduces the reader smoothly into the Bayesian statistical methods with chapters that gradually increase in level of complexity. Master students in biostatistics, applied statisticians and all researchers with a good background in classical statistics who have interest in Bayesian methods will find this book useful.
Download or read book Bayesian Estimation and Inference in Computational Anatomy and Neuroimaging Methods Applications written by Xiaoying Tang and published by Frontiers Media SA. This book was released on 2019-08-22 with total page 118 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Anatomy (CA) is an emerging discipline aiming to understand anatomy by utilizing a comprehensive set of mathematical tools. CA focuses on providing precise statistical encodings of anatomy with direct application to a broad range of biological and medical settings. During the past two decades, there has been an ever-increasing pace in the development of neuroimaging techniques, delivering in vivo information on the anatomy and physiological signals of different human organs through a variety of imaging modalities such as MRI, x-ray, CT, and PET. These multi-modality medical images provide valuable data for accurate interpretation and estimation of various biological parameters such as anatomical labels, disease types, cognitive states, functional connectivity between distinct anatomical regions, as well as activation responses to specific stimuli. In the era of big neuroimaging data, Bayes’ theorem provides a powerful tool to deliver statistical conclusions by combining the current information and prior experience. When sufficiently good data is available, Bayes’ theorem can utilize it fully and provide statistical inferences/estimations with the least error rate. Bayes’ theorem arose roughly three hundred years ago and has seen extensive application in many fields of science and technology, including recent neuroimaging, ever since. The last fifteen years have seen a great deal of success in the application of Bayes’ theorem to the field of CA and neuroimaging. That said, given that the power and success of Bayes’ rule largely depends on the validity of its probabilistic inputs, it is still a challenge to perform Bayesian estimation and inference on the typically noisy neuroimaging data of the real world. We assembled contributions focusing on recent developments in CA and neuroimaging through Bayesian estimation and inference, in terms of both methodologies and applications. It is anticipated that the articles in this Research Topic will provide a greater insight into the field of Bayesian imaging analysis.
Download or read book Neural Masses and Fields Modelling the Dynamics of Brain Activity written by Karl Friston and published by Frontiers Media SA. This book was released on 2015-05-25 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: Biophysical modelling of brain activity has a long and illustrious history and has recently profited from technological advances that furnish neuroimaging data at an unprecedented spatiotemporal resolution. Neuronal modelling is a very active area of research, with applications ranging from the characterization of neurobiological and cognitive processes, to constructing artificial brains in silico and building brain-machine interface and neuroprosthetic devices. Biophysical modelling has always benefited from interdisciplinary interactions between different and seemingly distant fields; ranging from mathematics and engineering to linguistics and psychology. This Research Topic aims to promote such interactions by promoting papers that contribute to a deeper understanding of neural activity as measured by fMRI or electrophysiology. In general, mean field models of neural activity can be divided into two classes: neural mass and neural field models. The main difference between these classes is that field models prescribe how a quantity characterizing neural activity (such as average depolarization of a neural population) evolves over both space and time as opposed to mass models, which characterize activity over time only; by assuming that all neurons in a population are located at (approximately) the same point. This Research Topic focuses on both classes of models and considers several aspects and their relative merits that: span from synapses to the whole brain; comparisons of their predictions with EEG and MEG spectra of spontaneous brain activity; evoked responses, seizures, and fitting data - to infer brain states and map physiological parameters.
Download or read book Studies in Neural Data Science written by Antonio Canale and published by Springer. This book was released on 2018-12-28 with total page 164 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume presents a collection of peer-reviewed contributions arising from StartUp Research: a stimulating research experience in which twenty-eight early-career researchers collaborated with seven senior international professors in order to develop novel statistical methods for complex brain imaging data. During this meeting, which was held on June 25–27, 2017 in Siena (Italy), the research groups focused on recent multimodality imaging datasets measuring brain function and structure, and proposed a wide variety of methods for network analysis, spatial inference, graphical modeling, multiple testing, dynamic inference, data fusion, tensor factorization, object-oriented analysis and others. The results of their studies are gathered here, along with a final contribution by Michele Guindani and Marina Vannucci that opens new research directions in this field. The book offers a valuable resource for all researchers in Data Science and Neuroscience who are interested in the promising intersections of these two fundamental disciplines.
Download or read book Spatial and Spatio temporal Bayesian Models with R INLA written by Marta Blangiardo and published by John Wiley & Sons. This book was released on 2015-06-02 with total page 322 pages. Available in PDF, EPUB and Kindle. Book excerpt: Spatial and Spatio-Temporal Bayesian Models with R-INLA provides a much needed, practically oriented & innovative presentation of the combination of Bayesian methodology and spatial statistics. The authors combine an introduction to Bayesian theory and methodology with a focus on the spatial and spatio-temporal models used within the Bayesian framework and a series of practical examples which allow the reader to link the statistical theory presented to real data problems. The numerous examples from the fields of epidemiology, biostatistics and social science all are coded in the R package R-INLA, which has proven to be a valid alternative to the commonly used Markov Chain Monte Carlo simulations
Download or read book Advanced Brain Neuroimaging Topics in Health and Disease written by Dorina Papageorgiou and published by BoD – Books on Demand. This book was released on 2014-05-31 with total page 682 pages. Available in PDF, EPUB and Kindle. Book excerpt: The brain is the most complex computational device we know, consisting of highly interacting and redundant networks of areas, supporting specific brain functions. The rules by which these areas organize themselves to perform specific computations have only now started to be uncovered. Advances in non-invasive neuroimaging technologies have revolutionized our understanding of the functional anatomy of cortical circuits in health and disease states, which is the focus of this book. The first section of this book focuses on methodological issues, such as combining functional MRI technology with other brain imaging modalities. The second section examines the application of brain neuroimaging to understand cognitive, visual, auditory, motor and decision-making networks, as well as neurological diseases. The use of non-invasive neuroimaging technologies will continue to stimulate an exponential growth in understanding basic brain processes, largely as a result of sustained advances in neuroimaging methods and applications.
Download or read book The Statistical Analysis of Functional MRI Data written by Nicole Lazar and published by Springer Science & Business Media. This book was released on 2008-06-10 with total page 302 pages. Available in PDF, EPUB and Kindle. Book excerpt: The study of brain function is one of the most fascinating pursuits of m- ern science. Functional neuroimaging is an important component of much of the current research in cognitive, clinical, and social psychology. The exci- ment of studying the brain is recognized in both the popular press and the scienti?c community. In the pages of mainstream publications, including The New York Times and Wired, readers can learn about cutting-edge research into topics such as understanding how customers react to products and - vertisements (“If your brain has a ‘buy button,’ what pushes it?”, The New York Times,October19,2004),howviewersrespondtocampaignads(“Using M. R. I. ’s to see politics on the brain,” The New York Times, April 20, 2004; “This is your brain on Hillary: Political neuroscience hits new low,” Wired, November 12,2007),howmen and womenreactto sexualstimulation (“Brain scans arouse researchers,”Wired, April 19, 2004), distinguishing lies from the truth (“Duped,” The New Yorker, July 2, 2007; “Woman convicted of child abuse hopes fMRI can prove her innocence,” Wired, November 5, 2007), and even what separates “cool” people from “nerds” (“If you secretly like Michael Bolton, we’ll know,” Wired, October 2004). Reports on pathologies such as autism, in which neuroimaging plays a large role, are also common (for - stance, a Time magazine cover story from May 6, 2002, entitled “Inside the world of autism”).
Download or read book Brain Mapping written by and published by Academic Press. This book was released on 2015-02-14 with total page 2668 pages. Available in PDF, EPUB and Kindle. Book excerpt: Brain Mapping: A Comprehensive Reference, Three Volume Set offers foundational information for students and researchers across neuroscience. With over 300 articles and a media rich environment, this resource provides exhaustive coverage of the methods and systems involved in brain mapping, fully links the data to disease (presenting side by side maps of healthy and diseased brains for direct comparisons), and offers data sets and fully annotated color images. Each entry is built on a layered approach of the content – basic information for those new to the area and more detailed material for experienced readers. Edited and authored by the leading experts in the field, this work offers the most reputable, easily searchable content with cross referencing across articles, a one-stop reference for students, researchers and teaching faculty. Broad overview of neuroimaging concepts with applications across the neurosciences and biomedical research Fully annotated color images and videos for best comprehension of concepts Layered content for readers of different levels of expertise Easily searchable entries for quick access of reputable information Live reference links to ScienceDirect, Scopus and PubMed
Download or read book Scalable Bayesian spatial analysis with Gaussian Markov random fields written by Per Sidén and published by Linköping University Electronic Press. This book was released on 2020-08-17 with total page 53 pages. Available in PDF, EPUB and Kindle. Book excerpt: Accurate statistical analysis of spatial data is important in many applications. Failing to properly account for spatial autocorrelation may often lead to false conclusions. At the same time, the ever-increasing sizes of spatial datasets pose a great computational challenge, as many standard methods for spatial analysis are limited to a few thousand data points. In this thesis, we explore how Gaussian Markov random fields (GMRFs) can be used for scalable analysis of spatial data. GMRFs are closely connected to the commonly used Gaussian processes, but have sparsity properties that make them computationally cheap both in time and memory. The Bayesian framework enables a GMRF to be used as a spatial prior, comprising the assumption of smooth variation over space, and gives a principled way to estimate the parameters and propagate uncertainty. We develop new algorithms that enable applying GMRF priors in 3D to the brain activity inherent in functional magnetic resonance imaging (fMRI) data, with millions of observations. We show that our methods are both faster and more accurate than previous work. A method for approximating selected elements of the inverse precision matrix (i.e. the covariance matrix) is also proposed, which is important for evaluating the posterior uncertainty. In addition, we establish a link between GMRFs and deep convolutional neural networks, which have been successfully used in countless machine learning tasks for images, resulting in a deep GMRF model. Finally, we show how GMRFs can be used in real-time robotic search and rescue operations, for modeling the spatial distribution of injured persons. Tillförlitlig statistisk analys av spatiala data är viktigt inom många tillämpningar. Om inte korrekt hänsyn tas till spatial autokorrelation kan det ofta leda till felaktiga slutsatser. Samtidigt ökar ständigt storleken på de spatiala datamaterialen vilket utgör en stor beräkningsmässig utmaning, eftersom många standardmetoder för spatial analys är begränsade till några tusental datapunkter. I denna avhandling utforskar vi hur Gaussiska Markov-fält (eng: Gaussian Markov random fields, GMRF) kan användas för mer skalbara analyser av spatiala data. GMRF-modeller är nära besläktade med de ofta använda Gaussiska processerna, men har gleshetsegenskaper som gör dem beräkningsmässigt effektiva både vad gäller tids- och minnesåtgång. Det Bayesianska synsättet gör det möjligt att använda GMRF som en spatial prior som innefattar antagandet om långsam spatial variation och ger ett principiellt tillvägagångssätt för att skatta parametrar och propagera osäkerhet. Vi utvecklar nya algoritmer som gör det möjligt att använda GMRF-priors i 3D för den hjärnaktivitet som indirekt kan observeras i hjärnbilder framtagna med tekniken fMRI, som innehåller milliontals datapunkter. Vi visar att våra metoder är både snabbare och mer korrekta än tidigare forskning. En metod för att approximera utvalda element i den inversa precisionsmatrisen (dvs. kovariansmatrisen) framförs också, vilket är viktigt för att kunna evaluera osäkerheten i posteriorn. Vidare gör vi en koppling mellan GMRF och djupa neurala faltningsnätverk, som har använts framgångsrikt för mängder av bildrelaterade problem inom maskininlärning, vilket mynnar ut i en djup GMRF-modell. Slutligen visar vi hur GMRF kan användas i realtid av autonoma drönare för räddningsinsatser i katastrofområden för att modellera den spatiala fördelningen av skadade personer.
Download or read book Statistical Methods in Epilepsy written by Sharon Chiang and published by CRC Press. This book was released on 2024-03-25 with total page 419 pages. Available in PDF, EPUB and Kindle. Book excerpt: Epilepsy research promises new treatments and insights into brain function, but statistics and machine learning are paramount for extracting meaning from data and enabling discovery. Statistical Methods in Epilepsy provides a comprehensive introduction to statistical methods used in epilepsy research. Written in a clear, accessible style by leading authorities, this textbook demystifies introductory and advanced statistical methods, providing a practical roadmap that will be invaluable for learners and experts alike. Topics include a primer on version control and coding, pre-processing of imaging and electrophysiological data, hypothesis testing, generalized linear models, survival analysis, network analysis, time-series analysis, spectral analysis, spatial statistics, unsupervised and supervised learning, natural language processing, prospective trial design, pharmacokinetic and pharmacodynamic modeling, and randomized clinical trials. Features: Provides a comprehensive introduction to statistical methods employed in epilepsy research Divided into four parts: Basic Processing Methods for Data Analysis; Statistical Models for Epilepsy Data Types; Machine Learning Methods; and Clinical Studies Covers methodological and practical aspects, as well as worked-out examples with R and Python code provided in the online supplement Includes contributions by experts in the field https://github.com/sharon-chiang/Statistics-Epilepsy-Book/ The handbook targets clinicians, graduate students, medical students, and researchers who seek to conduct quantitative epilepsy research. The topics covered extend broadly to quantitative research in other neurological specialties and provide a valuable reference for the field of neurology.
Download or read book 17th International Conference on Biomagnetism Advances in Biomagnetism Biomag 2010 March 28 April 1 2010 written by Selma Supek and published by Springer Science & Business Media. This book was released on 2010-04-07 with total page 475 pages. Available in PDF, EPUB and Kindle. Book excerpt: 40th anniversary of "medical uses of SQUID" th It is my great pleasure and honor to invite you to the 17 International Conference on Biomagnetism – Biomag2010 held in Dubrovnik, Croatia from Sunday, March 28 through Thursday, April 1, 2010. The interdisciplinary field of biomagnetism includes dynamic and evolving SQUID-based technologies offering advanced real-time methods for noninvasive assessments of magnetic signals from the brain, heart and other organs as well as a range of modeling, mathematical and computational methods for functional source localization approaches. Excellent spatial resolution and unique, millisecond, temporal resolution of biomagnetic techniques allow insights into cortical neurodynamics and neurobiological basis of the human brain as well as assessment of heart and other organs functions in health and disease. Biomag2010 will be a great opportunity for an exchange of ideas and presentation of the latest developments in instrumentation, modeling approaches, basic and clinical biomedical studies. We are particularly proud to announce the celebration of the 40th anniversary of the first SQUID-based MCG measurements published on April 1, 1970. Since then ''medical uses of SQUID'' were dynamic and growing, including the most recent developments, in combination with a low field MRI, toward a ''direct neuronal imaging''. Dubrovnik, the host city of the Biomag2010, a jewel on the Adriatic, will be a superb and stimulating setting for both scientific and social aspects of this meeting. I am looking forward to hosting you in Dubrovnik, Croatia in spring of 2010.
Download or read book Multivariate Analysis for Neuroimaging Data written by Atsushi Kawaguchi and published by CRC Press. This book was released on 2021-07-01 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book describes methods for statistical brain imaging data analysis from both the perspective of methodology and from the standpoint of application for software implementation in neuroscience research. These include those both commonly used (traditional established) and state of the art methods. The former is easier to do due to the availability of appropriate software. To understand the methods it is necessary to have some mathematical knowledge which is explained in the book with the help of figures and descriptions of the theory behind the software. In addition, the book includes numerical examples to guide readers on the working of existing popular software. The use of mathematics is reduced and simplified for non-experts using established methods, which also helps in avoiding mistakes in application and interpretation. Finally, the book enables the reader to understand and conceptualize the overall flow of brain imaging data analysis, particularly for statisticians and data-scientists unfamiliar with this area. The state of the art method described in the book has a multivariate approach developed by the authors’ team. Since brain imaging data, generally, has a highly correlated and complex structure with large amounts of data, categorized into big data, the multivariate approach can be used as dimension reduction by following the application of statistical methods. The R package for most of the methods described is provided in the book. Understanding the background theory is helpful in implementing the software for original and creative applications and for an unbiased interpretation of the output. The book also explains new methods in a conceptual manner. These methodologies and packages are commonly applied in life science data analysis. Advanced methods to obtain novel insights are introduced, thereby encouraging the development of new methods and applications for research into medicine as a neuroscience.
Download or read book Bayesian Forecasting and Dynamic Models written by Mike West and published by Springer Science & Business Media. This book was released on 2013-06-29 with total page 720 pages. Available in PDF, EPUB and Kindle. Book excerpt: In this book we are concerned with Bayesian learning and forecast ing in dynamic environments. We describe the structure and theory of classes of dynamic models, and their uses in Bayesian forecasting. The principles, models and methods of Bayesian forecasting have been developed extensively during the last twenty years. This devel opment has involved thorough investigation of mathematical and sta tistical aspects of forecasting models and related techniques. With this has come experience with application in a variety of areas in commercial and industrial, scientific and socio-economic fields. In deed much of the technical development has been driven by the needs of forecasting practitioners. As a result, there now exists a relatively complete statistical and mathematical framework, although much of this is either not properly documented or not easily accessible. Our primary goals in writing this book have been to present our view of this approach to modelling and forecasting, and to provide a rea sonably complete text for advanced university students and research workers. The text is primarily intended for advanced undergraduate and postgraduate students in statistics and mathematics. In line with this objective we present thorough discussion of mathematical and statistical features of Bayesian analyses of dynamic models, with illustrations, examples and exercises in each Chapter.
Download or read book Multimodal Brain Image Analysis written by Pew-Thian Yap and published by Springer. This book was released on 2012-09-18 with total page 235 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book constitutes the refereed proceedings of the Second International Workshop on Multimodal Brain Image Analysis, held in conjunction with MICCAI 2012, in Nice, France, in October 2012. The 19 revised full papers presented were carefully reviewed and selected from numerous submissions. The objective of this workshop is to forward the state of the art in analysis methodologies, algorithms, software systems, validation approaches, benchmark datasets, neuroscience, and clinical applications.
Download or read book Bayesian Statistics 6 written by J. M. Bernardo and published by Oxford University Press. This book was released on 1999-08-12 with total page 886 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian statistics is a dynamic and fast-growing area of statistical research and the Valencia International Meetings provide the main forum for discussion. These resulting proceedings form an up-to-date collection of research.