Download or read book Free Energy Methods in Drug Discovery written by Kira A. Armacost and published by . This book was released on 2021 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: "This book is about Free Energy Methods in Drug Discovery: Current State and Future Directions"--
Download or read book Free Energy Calculations written by Christophe Chipot and published by Springer Science & Business Media. This book was released on 2007-01-08 with total page 528 pages. Available in PDF, EPUB and Kindle. Book excerpt: Free energy constitutes the most important thermodynamic quantity to understand how chemical species recognize each other, associate or react. Examples of problems in which knowledge of the underlying free energy behaviour is required, include conformational equilibria and molecular association, partitioning between immiscible liquids, receptor-drug interaction, protein-protein and protein-DNA association, and protein stability. This volume sets out to present a coherent and comprehensive account of the concepts that underlie different approaches devised for the determination of free energies. The reader will gain the necessary insight into the theoretical and computational foundations of the subject and will be presented with relevant applications from molecular-level modelling and simulations of chemical and biological systems. Both formally accurate and approximate methods are covered using both classical and quantum mechanical descriptions. A central theme of the book is that the wide variety of free energy calculation techniques available today can be understood as different implementations of a few basic principles. The book is aimed at a broad readership of graduate students and researchers having a background in chemistry, physics, engineering and physical biology.
Download or read book Free Energy Calculations in Rational Drug Design written by M. Rami Reddy and published by Springer Science & Business Media. This book was released on 2001-12-31 with total page 420 pages. Available in PDF, EPUB and Kindle. Book excerpt: Free energy calculations represent the most accurate computational method available for predicting enzyme inhibitor binding affinities. Advances in computer power in the 1990s enabled the practical application of these calculations in rationale drug design. This book represents the first comprehensive review of this growing area of research and covers the basic theory underlying the method, numerous state of the art strategies designed to improve throughput and dozen examples wherein free energy calculations were used to design and evaluate potential drug candidates.
Download or read book Drug Design written by Kenneth M. Merz and published by Cambridge University Press. This book was released on 2010-05-31 with total page 289 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book provides a complete snapshot of various experimental approaches to structure-based and ligand-based drug design and is illustrated with more than 200 images.
Download or read book Physico chemical and Computational Approaches to Drug Discovery written by Javier Luque and published by Royal Society of Chemistry. This book was released on 2012 with total page 443 pages. Available in PDF, EPUB and Kindle. Book excerpt: This title covers a wide range of topics relevant to the development of drugs. It provides a comprehensive description of the major methodological strategies available for rational drug discovery.
Download or read book Biomolecular Simulations in Structure Based Drug Discovery written by Francesco L. Gervasio and published by John Wiley & Sons. This book was released on 2019-04-29 with total page 368 pages. Available in PDF, EPUB and Kindle. Book excerpt: A guide to applying the power of modern simulation tools to better drug design Biomolecular Simulations in Structure-based Drug Discovery offers an up-to-date and comprehensive review of modern simulation tools and their applications in real-life drug discovery, for better and quicker results in structure-based drug design. The authors describe common tools used in the biomolecular simulation of drugs and their targets and offer an analysis of the accuracy of the predictions. They also show how to integrate modeling with other experimental data. Filled with numerous case studies from different therapeutic fields, the book helps professionals to quickly adopt these new methods for their current projects. Experts from the pharmaceutical industry and academic institutions present real-life examples for important target classes such as GPCRs, ion channels and amyloids as well as for common challenges in structure-based drug discovery. Biomolecular Simulations in Structure-based Drug Discovery is an important resource that: -Contains a review of the current generation of biomolecular simulation tools that have the robustness and speed that allows them to be used as routine tools by non-specialists -Includes information on the novel methods and strategies for the modeling of drug-target interactions within the framework of real-life drug discovery and development -Offers numerous illustrative case studies from a wide-range of therapeutic fields -Presents an application-oriented reference that is ideal for those working in the various fields Written for medicinal chemists, professionals in the pharmaceutical industry, and pharmaceutical chemists, Biomolecular Simulations in Structure-based Drug Discovery is a comprehensive resource to modern simulation tools that complement and have the potential to complement or replace laboratory assays for better results in drug design.
Download or read book Computational Drug Design written by D. C. Young and published by John Wiley & Sons. This book was released on 2009-01-28 with total page 344 pages. Available in PDF, EPUB and Kindle. Book excerpt: Helps you choose the right computational tools and techniques to meet your drug design goals Computational Drug Design covers all of the major computational drug design techniques in use today, focusing on the process that pharmaceutical chemists employ to design a new drug molecule. The discussions of which computational tools to use and when and how to use them are all based on typical pharmaceutical industry drug design processes. Following an introduction, the book is divided into three parts: Part One, The Drug Design Process, sets forth a variety of design processes suitable for a number of different drug development scenarios and drug targets. The author demonstrates how computational techniques are typically used during the design process, helping readers choose the best computational tools to meet their goals. Part Two, Computational Tools and Techniques, offers a series of chapters, each one dedicated to a single computational technique. Readers discover the strengths and weaknesses of each technique. Moreover, the book tabulates comparative accuracy studies, giving readers an unbiased comparison of all the available techniques. Part Three, Related Topics, addresses new, emerging, and complementary technologies, including bioinformatics, simulations at the cellular and organ level, synthesis route prediction, proteomics, and prodrug approaches. The book's accompanying CD-ROM, a special feature, offers graphics of the molecular structures and dynamic reactions discussed in the book as well as demos from computational drug design software companies. Computational Drug Design is ideal for both students and professionals in drug design, helping them choose and take full advantage of the best computational tools available. Note: CD-ROM/DVD and other supplementary materials are not included as part of eBook file.
Download or read book Molecular Dynamics and Machine Learning in Drug Discovery written by Sergio Decherchi and published by Frontiers Media SA. This book was released on 2021-06-08 with total page 119 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dr. Sergio Decherchi and Dr. Andrea Cavalli are co-founders of BiKi Technologies s.r.l. - a company that commercializes a Molecular Dynamics-based software suite for drug discovery. All other Topic Editors declare no competing interests with regards to the Research Topic subject.
Download or read book Concepts and Experimental Protocols of Modelling and Informatics in Drug Design written by Om Silakari and published by Academic Press. This book was released on 2020-11-05 with total page 398 pages. Available in PDF, EPUB and Kindle. Book excerpt: Concepts and Experimental Protocols of Modelling and Informatics in Drug Design discusses each experimental protocol utilized in the field of bioinformatics, focusing especially on computer modeling for drug development. It helps the user in understanding the field of computer-aided molecular modeling (CAMM) by presenting solved exercises and examples. The book discusses topics such as fundamentals of molecular modeling, QSAR model generation, protein databases and how to use them to select and analyze protein structure, and pharmacophore modeling for drug targets. Additionally, it discusses data retrieval system, molecular surfaces, and freeware and online servers. The book is a valuable source for graduate students and researchers on bioinformatics, molecular modeling, biotechnology and several members of biomedical field who need to understand more about computer-aided molecular modeling. - Presents exercises with solutions to aid readers in validating their own protocol - Brings a thorough interpretation of results of each exercise to help readers compare them to their own study - Explains each parameter utilized in the algorithms to help readers understand and manipulate various features of molecules and target protein to design their study
Download or read book Quantum Mechanics in Drug Discovery written by Alexander Heifetz and published by Humana. This book was released on 2021-02-18 with total page 360 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume looks at applications of quantum mechanical (QM) methods in drug discovery. The chapters in this book describe how QM approaches can be applied to address key drug discovery issues, such as characterizing protein-water-ligand and protein-protein interactions, providing estimates of binding affinities, determining ligand energies and bioactive conformations, refinement of molecular geometries, scoring docked protein–ligand poses, describing molecular similarity, structure–activity-relationship (SAR) analysis, and ADMET prediction. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary software and tools, step-by-step, readily reproducible modeling protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and unique, Quantum Mechanics in Drug Discovery is a valuable resource for structural and molecular biologists, computational and medicinal chemists, pharmacologists, and drug designers.
Download or read book Drug like Properties Concepts Structure Design and Methods written by Li Di and published by Elsevier. This book was released on 2010-07-26 with total page 549 pages. Available in PDF, EPUB and Kindle. Book excerpt: Of the thousands of novel compounds that a drug discovery project team invents and that bind to the therapeutic target, typically only a fraction of these have sufficient ADME/Tox properties to become a drug product. Understanding ADME/Tox is critical for all drug researchers, owing to its increasing importance in advancing high quality candidates to clinical studies and the processes of drug discovery. If the properties are weak, the candidate will have a high risk of failure or be less desirable as a drug product. This book is a tool and resource for scientists engaged in, or preparing for, the selection and optimization process. The authors describe how properties affect in vivo pharmacological activity and impact in vitro assays. Individual drug-like properties are discussed from a practical point of view, such as solubility, permeability and metabolic stability, with regard to fundamental understanding, applications of property data in drug discovery and examples of structural modifications that have achieved improved property performance. The authors also review various methods for the screening (high throughput), diagnosis (medium throughput) and in-depth (low throughput) analysis of drug properties. - Serves as an essential working handbook aimed at scientists and students in medicinal chemistry - Provides practical, step-by-step guidance on property fundamentals, effects, structure-property relationships, and structure modification strategies - Discusses improvements in pharmacokinetics from a practical chemist's standpoint
Download or read book In Silico Drug Discovery and Design written by Claudio N. Cavasotto and published by CRC Press. This book was released on 2017-07 with total page pages. Available in PDF, EPUB and Kindle. Book excerpt: In Silico Drug Discovery and Design: Theory, Methods, Challenges, and Applications provides a comprehensive, unified, and in-depth overview of the current methodological strategies in computer-aided drug discovery and design. Its main aims are to introduce the theoretical framework and algorithms, discuss the range of validity, strengths and limitations of each methodology, and present applications to real world problems in the drug discovery arena. Special emphasis has been given to the emerging and most pressing methodological challenges in in silico drug discovery and design. The book assumes a basic knowledge of physical principles and molecular modeling. Particular attention has been paid to outline the underlying physico-chemical foundation of the methods described, thus providing the necessary background to avoid a -black-box- approach. In each self-contained chapter, this is presented together with the latest developments and applications, and the challenges that lie ahead. Assembling a unique team of experts to weigh in on the most important issues influencing modern computational drug discovery and design, this book constitutes both a desktop reference to academic and industrial researchers in the field, and a textbook for students in the area of molecular modeling and drug discovery. Comprised of 18 chapters and divided into three parts, this book: Provides a comprehensive, unified, and in-depth overview of the current methodological strategies in computer-aided drug discovery and design Outlines the underlying physico-chemical foundation of the methods described Presents several applications of computational methods to real world problems in the drug design field Helps to avoid a -black-box- approach to in silico drug discovery Constitutes an actual textbook for students in the area of molecular modeling and drug discovery Gives the reader the adequate background to face the current challenges of the field In Silico Drug Discovery and Design: Theory, Methods, Challenges, and Applications describes the theoretical framework, methods, practical applications and case examples relevant to computer-aided drug lead discovery and design. This text will surely aid in understanding the underlying physical foundation of computational tools and their range of application, thus facilitating the interpretation of simulation results.
Download or read book Computational Methods for GPCR Drug Discovery written by Alexander Heifetz and published by Humana Press. This book was released on 2017-11-30 with total page 436 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume looks at modern computational strategies and techniques used in GPCR drug discovery including structure and ligand-based approaches and cheminformatics. The chapters in this book describe how these approaches can be applied to address key drug discovery issues, such as receptor structure modelling, function and dynamics, prediction of protein-water-ligand interactions and binding kinetics, free energy of binding, interconversion between agonists and antagonists, deorphanization of GPCRs, and the discovery of biased and allosteric modulators. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary software and tools, step-by-step, readily reproducible modelling protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and unique,Computational Methods for GPCR Drug Discovery is a valuable resource for structural and molecular biologists, computational and medicinal chemists, pharmacologists, and drug designers.
Download or read book Biomolecular Simulations written by Massimiliano Bonomi and published by Humana. This book was released on 2020-08-14 with total page 581 pages. Available in PDF, EPUB and Kindle. Book excerpt: This volume explores the recent advancements in biomolecular simulations of proteins, small molecules, and nucleic acids, with a primary focus on classical molecular dynamics (MD) simulations at atomistic, coarse-grained, and quantum/ab-initio levels. The chapters in this book are divided into four parts: Part One looks at recent techniques used in the development of physic-chemical models of proteins, small molecules, nucleic acids, and lipids; Part Two discusses enhanced sampling and free-energy calculations; Part Three talks about integrative computational and experimental approaches for biomolecular simulations; and Part Four focuses on analyzing, visualizing, and comparing biomolecular simulations. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and comprehensive, Biomolecular Simulations: Methods and Protocols is a valuable resource for both novice and expert researchers who are interested in studying different areas of biomolecular simulations, and discovering new tools to progress their future projects.
Download or read book Computational Drug Discovery and Design written by Riccardo Baron and published by Humana Press. This book was released on 2011-12-21 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Due to the rapid and steady growth of available low-cost computer power, the use of computers for discovering and designing new drugs is becoming a central topic in modern molecular biology and medicinal chemistry. In Computational Drug Discovery and Design: Methods and Protocols expert researchers in the field provide key techniques to investigate biomedical applications for drug developments based on computational chemistry. These include methods and techniques from binding sites prediction to the accurate inclusion of solvent and entropic effects, from high-throughput screening of large compound databases to the expanding area of protein-protein inhibition, toward quantitative free-energy approaches in ensemble-based drug design using distributed computing. Written in the highly successful Methods in Molecular BiologyTM series format, chapters include introductions to their respective topics, reference to software and open source analysis tools, step-by-step, readily reproducible computational protocols, and key tips on troubleshooting and avoiding known pitfalls. Thorough and intuitive, Computational Drug Discovery and Design: Methods and Protocols aids scientists in the continuing study of state-of-the-art concepts and computer-based methodologies.
Download or read book Small Molecule Drug Discovery written by Andrea Trabocchi and published by Elsevier. This book was released on 2019-11-23 with total page 358 pages. Available in PDF, EPUB and Kindle. Book excerpt: Small Molecule Drug Discovery: Methods, Molecules and Applications presents the methods used to identify bioactive small molecules, synthetic strategies and techniques to produce novel chemical entities and small molecule libraries, chemoinformatics to characterize and enumerate chemical libraries, and screening methods, including biophysical techniques, virtual screening and phenotypic screening. The second part of the book gives an overview of privileged cyclic small molecules and major classes of natural product-derived small molecules, including carbohydrate-derived compounds, peptides and peptidomimetics, and alkaloid-inspired compounds. The last section comprises an exciting collection of selected case studies on drug discovery enabled by small molecules in the fields of cancer research, CNS diseases and infectious diseases. The discovery of novel molecular entities capable of specific interactions represents a significant challenge in early drug discovery. Small molecules are low molecular weight organic compounds that include natural products and metabolites, as well as drugs and other xenobiotics. When the biological target is well defined and understood, the rational design of small molecule ligands is possible. Alternatively, small molecule libraries are being used for unbiased assays for complex diseases where a target is unknown or multiple factors contribute to a disease pathology. - Outlines modern concepts and synthetic strategies underlying the building of small molecules and their chemical libraries useful for drug discovery - Provides modern biophysical methods to screening small molecule libraries, including high-throughput screening, small molecule microarrays, phenotypic screening and chemical genetics - Presents the most advanced chemoinformatics tools to characterize the structural features of small molecule libraries in terms of chemical diversity and complexity, also including the application of virtual screening approaches - Gives an overview of structural features and classification of natural product-derived small molecules, including carbohydrate derivatives, peptides and peptidomimetics, and alkaloid-inspired small molecules
Download or read book Biophysical and Computational Tools in Drug Discovery written by Anil Kumar Saxena and published by Springer Nature. This book was released on 2021-10-18 with total page 405 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book reviews recent physicochemical and biophysical techniques applied in drug discovery research, and it outlines the latest advances in computational drug design. Divided into 10 chapters, the book discusses about the role of structural biology in drug discovery, and offers useful application cases of several biophysical and computational methods, including time-resolved fluorometry (TRF) with Förster resonance energy transfer (FRET), X-Ray crystallography, nuclear magnetic resonance spectroscopy, mass spectroscopy, generative machine learning for inverse molecular design, quantum mechanics/molecular mechanics (QM/MM,ONIOM) and quantum molecular dynamics (QMT) methods. Particular attention is given to computational search techniques applied to peptide vaccines using novel mathematical descriptors and structure and ligand-based virtual screening techniques in drug discovery research. Given its scope, the book is a valuable resource for students, researchers and professionals from pharmaceutical industry interested in drug design and discovery.