EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Apache Kafka Quick Start Guide

Download or read book Apache Kafka Quick Start Guide written by Raúl Estrada and published by Packt Publishing Ltd. This book was released on 2018-12-27 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: Process large volumes of data in real-time while building high performance and robust data stream processing pipeline using the latest Apache Kafka 2.0 Key FeaturesSolve practical large data and processing challenges with KafkaTackle data processing challenges like late events, windowing, and watermarkingUnderstand real-time streaming applications processing using Schema registry, Kafka connect, Kafka streams, and KSQLBook Description Apache Kafka is a great open source platform for handling your real-time data pipeline to ensure high-speed filtering and pattern matching on the fly. In this book, you will learn how to use Apache Kafka for efficient processing of distributed applications and will get familiar with solving everyday problems in fast data and processing pipelines. This book focuses on programming rather than the configuration management of Kafka clusters or DevOps. It starts off with the installation and setting up the development environment, before quickly moving on to performing fundamental messaging operations such as validation and enrichment. Here you will learn about message composition with pure Kafka API and Kafka Streams. You will look into the transformation of messages in different formats, such asext, binary, XML, JSON, and AVRO. Next, you will learn how to expose the schemas contained in Kafka with the Schema Registry. You will then learn how to work with all relevant connectors with Kafka Connect. While working with Kafka Streams, you will perform various interesting operations on streams, such as windowing, joins, and aggregations. Finally, through KSQL, you will learn how to retrieve, insert, modify, and delete data streams, and how to manipulate watermarks and windows. What you will learnHow to validate data with KafkaAdd information to existing data flowsGenerate new information through message compositionPerform data validation and versioning with the Schema RegistryHow to perform message Serialization and DeserializationHow to perform message Serialization and DeserializationProcess data streams with Kafka StreamsUnderstand the duality between tables and streams with KSQLWho this book is for This book is for developers who want to quickly master the practical concepts behind Apache Kafka. The audience need not have come across Apache Kafka previously; however, a familiarity of Java or any JVM language will be helpful in understanding the code in this book.

Book Apache Kafka Quick Start Guide

Download or read book Apache Kafka Quick Start Guide written by Raul Estrada and published by . This book was released on 2018-12-27 with total page 186 pages. Available in PDF, EPUB and Kindle. Book excerpt: Process large volumes of data in real-time while building high performance and robust data stream processing pipeline using the latest Apache Kafka 2.0 Key Features Solve practical large data and processing challenges with Kafka Tackle data processing challenges like late events, windowing, and watermarking Understand real-time streaming applications processing using Schema registry, Kafka connect, Kafka streams, and KSQL Book Description Apache Kafka is a great open source platform for handling your real-time data pipeline to ensure high-speed filtering and pattern matching on the fly. In this book, you will learn how to use Apache Kafka for efficient processing of distributed applications and will get familiar with solving everyday problems in fast data and processing pipelines. This book focuses on programming rather than the configuration management of Kafka clusters or DevOps. It starts off with the installation and setting up the development environment, before quickly moving on to performing fundamental messaging operations such as validation and enrichment. Here you will learn about message composition with pure Kafka API and Kafka Streams. You will look into the transformation of messages in different formats, such asext, binary, XML, JSON, and AVRO. Next, you will learn how to expose the schemas contained in Kafka with the Schema Registry. You will then learn how to work with all relevant connectors with Kafka Connect. While working with Kafka Streams, you will perform various interesting operations on streams, such as windowing, joins, and aggregations. Finally, through KSQL, you will learn how to retrieve, insert, modify, and delete data streams, and how to manipulate watermarks and windows. What you will learn How to validate data with Kafka Add information to existing data flows Generate new information through message composition Perform data validation and versioning with the Schema Registry How to perform message Serialization and Deserialization How to perform message Serialization and Deserialization Process data streams with Kafka Streams Understand the duality between tables and streams with KSQL Who this book is for This book is for developers who want to quickly master the practical concepts behind Apache Kafka. The audience need not have come across Apache Kafka previously; however, a familiarity of Java or any JVM language will be helpful in understanding the code in this book.

Book Kafka  The Definitive Guide

Download or read book Kafka The Definitive Guide written by Neha Narkhede and published by "O'Reilly Media, Inc.". This book was released on 2017-08-31 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: Every enterprise application creates data, whether it’s log messages, metrics, user activity, outgoing messages, or something else. And how to move all of this data becomes nearly as important as the data itself. If you’re an application architect, developer, or production engineer new to Apache Kafka, this practical guide shows you how to use this open source streaming platform to handle real-time data feeds. Engineers from Confluent and LinkedIn who are responsible for developing Kafka explain how to deploy production Kafka clusters, write reliable event-driven microservices, and build scalable stream-processing applications with this platform. Through detailed examples, you’ll learn Kafka’s design principles, reliability guarantees, key APIs, and architecture details, including the replication protocol, the controller, and the storage layer. Understand publish-subscribe messaging and how it fits in the big data ecosystem. Explore Kafka producers and consumers for writing and reading messages Understand Kafka patterns and use-case requirements to ensure reliable data delivery Get best practices for building data pipelines and applications with Kafka Manage Kafka in production, and learn to perform monitoring, tuning, and maintenance tasks Learn the most critical metrics among Kafka’s operational measurements Explore how Kafka’s stream delivery capabilities make it a perfect source for stream processing systems

Book Kafka Streams in Action

Download or read book Kafka Streams in Action written by Bill Bejeck and published by Simon and Schuster. This book was released on 2018-08-29 with total page 410 pages. Available in PDF, EPUB and Kindle. Book excerpt: Summary Kafka Streams in Action teaches you everything you need to know to implement stream processing on data flowing into your Kafka platform, allowing you to focus on getting more from your data without sacrificing time or effort. Foreword by Neha Narkhede, Cocreator of Apache Kafka Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Not all stream-based applications require a dedicated processing cluster. The lightweight Kafka Streams library provides exactly the power and simplicity you need for message handling in microservices and real-time event processing. With the Kafka Streams API, you filter and transform data streams with just Kafka and your application. About the Book Kafka Streams in Action teaches you to implement stream processing within the Kafka platform. In this easy-to-follow book, you'll explore real-world examples to collect, transform, and aggregate data, work with multiple processors, and handle real-time events. You'll even dive into streaming SQL with KSQL! Practical to the very end, it finishes with testing and operational aspects, such as monitoring and debugging. What's inside Using the KStreams API Filtering, transforming, and splitting data Working with the Processor API Integrating with external systems About the Reader Assumes some experience with distributed systems. No knowledge of Kafka or streaming applications required. About the Author Bill Bejeck is a Kafka Streams contributor and Confluent engineer with over 15 years of software development experience. Table of Contents PART 1 - GETTING STARTED WITH KAFKA STREAMS Welcome to Kafka Streams Kafka quicklyPART 2 - KAFKA STREAMS DEVELOPMENT Developing Kafka Streams Streams and state The KTable API The Processor APIPART 3 - ADMINISTERING KAFKA STREAMS Monitoring and performance Testing a Kafka Streams applicationPART 4 - ADVANCED CONCEPTS WITH KAFKA STREAMS Advanced applications with Kafka StreamsAPPENDIXES Appendix A - Additional configuration information Appendix B - Exactly once semantics

Book Microservices Deployment Cookbook

Download or read book Microservices Deployment Cookbook written by Vikram Murugesan and published by Packt Publishing Ltd. This book was released on 2017-01-31 with total page 374 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master over 60 recipes to help you deliver complete, scalable, microservice-based solutions and see the improved business results immediately About This Book Adopt microservices-based architecture and deploy it at scale Build your complete microservice architecture using different recipes for different solutions Identify specific tools for specific scenarios and deliver immediate business results, correlate use cases, and adopt them in your team and organization Who This Book Is For This book is for developers, ops, and DevOps professionals who would like to put microservices to work and improve products, services, and operations. Those looking to build and deploy microservices will find this book useful, as well as managers and people at CXO level looking to adopt microservices in their organization. Prior knowledge of Java is expected. No prior knowledge of microservices is assumed. What You Will Learn Build microservices using Spring Boot, Wildfly Swarm, Dropwizard, and SparkJava Containerize your microservice using Docker Deploy microservices using Mesos/Marathon and Kubernetes Implement service discovery and load balancing using Zookeeper, Consul, and Nginx Monitor microservices using Graphite and Grafana Write stream programs with Kafka Streams and Spark Aggregate and manage logs using Kafka Get introduced to DC/OS, Docker Swarm, and YARN In Detail This book will help any team or organization understand, deploy, and manage microservices at scale. It is driven by a sample application, helping you gradually build a complete microservice-based ecosystem. Rather than just focusing on writing a microservice, this book addresses various other microservice-related solutions: deployments, clustering, load balancing, logging, streaming, and monitoring. The initial chapters offer insights into how web and enterprise apps can be migrated to scalable microservices. Moving on, you'll see how to Dockerize your application so that it is ready to be shipped and deployed. We will look at how to deploy microservices on Mesos and Marathon and will also deploy microservices on Kubernetes. Next, you will implement service discovery and load balancing for your microservices. We'll also show you how to build asynchronous streaming systems using Kafka Streams and Apache Spark. Finally, we wind up by aggregating your logs in Kafka, creating your own metrics, and monitoring the metrics for the microservice. Style and approach This book follows a recipe-driven approach and shows you how to plug and play with all the various pieces, putting them together to build a complete scalable microservice ecosystem. You do not need to study the chapters in order, as you can directly refer to the content you need for your situation.

Book Mastering Kafka Streams and ksqlDB

Download or read book Mastering Kafka Streams and ksqlDB written by Mitch Seymour and published by "O'Reilly Media, Inc.". This book was released on 2021-02-04 with total page 505 pages. Available in PDF, EPUB and Kindle. Book excerpt: Working with unbounded and fast-moving data streams has historically been difficult. But with Kafka Streams and ksqlDB, building stream processing applications is easy and fun. This practical guide shows data engineers how to use these tools to build highly scalable stream processing applications for moving, enriching, and transforming large amounts of data in real time. Mitch Seymour, data services engineer at Mailchimp, explains important stream processing concepts against a backdrop of several interesting business problems. You'll learn the strengths of both Kafka Streams and ksqlDB to help you choose the best tool for each unique stream processing project. Non-Java developers will find the ksqlDB path to be an especially gentle introduction to stream processing. Learn the basics of Kafka and the pub/sub communication pattern Build stateless and stateful stream processing applications using Kafka Streams and ksqlDB Perform advanced stateful operations, including windowed joins and aggregations Understand how stateful processing works under the hood Learn about ksqlDB's data integration features, powered by Kafka Connect Work with different types of collections in ksqlDB and perform push and pull queries Deploy your Kafka Streams and ksqlDB applications to production

Book Apache Kafka 1 0 Cookbook

Download or read book Apache Kafka 1 0 Cookbook written by Raúl Estrada and published by Packt Publishing Ltd. This book was released on 2017-12-22 with total page 243 pages. Available in PDF, EPUB and Kindle. Book excerpt: Simplify real-time data processing by leveraging the power of Apache Kafka 1.0 About This Book Use Kafka 1.0 features such as Confluent platforms and Kafka streams to build efficient streaming data applications to handle and process your data Integrate Kafka with other Big Data tools such as Apache Hadoop, Apache Spark, and more Hands-on recipes to help you design, operate, maintain, and secure your Apache Kafka cluster with ease Who This Book Is For This book is for developers and Kafka administrators who are looking for quick, practical solutions to problems encountered while operating, managing or monitoring Apache Kafka. If you are a developer, some knowledge of Scala or Java will help, while for administrators, some working knowledge of Kafka will be useful. What You Will Learn Install and configure Apache Kafka 1.0 to get optimal performance Create and configure Kafka Producers and Consumers Operate your Kafka clusters efficiently by implementing the mirroring technique Work with the new Confluent platform and Kafka streams, and achieve high availability with Kafka Monitor Kafka using tools such as Graphite and Ganglia Integrate Kafka with third-party tools such as Elasticsearch, Logstash, Apache Hadoop, Apache Spark, and more In Detail Apache Kafka provides a unified, high-throughput, low-latency platform to handle real-time data feeds. This book will show you how to use Kafka efficiently, and contains practical solutions to the common problems that developers and administrators usually face while working with it. This practical guide contains easy-to-follow recipes to help you set up, configure, and use Apache Kafka in the best possible manner. You will use Apache Kafka Consumers and Producers to build effective real-time streaming applications. The book covers the recently released Kafka version 1.0, the Confluent Platform and Kafka Streams. The programming aspect covered in the book will teach you how to perform important tasks such as message validation, enrichment and composition.Recipes focusing on optimizing the performance of your Kafka cluster, and integrate Kafka with a variety of third-party tools such as Apache Hadoop, Apache Spark, and Elasticsearch will help ease your day to day collaboration with Kafka greatly. Finally, we cover tasks related to monitoring and securing your Apache Kafka cluster using tools such as Ganglia and Graphite. If you're looking to become the go-to person in your organization when it comes to working with Apache Kafka, this book is the only resource you need to have. Style and approach Following a cookbook recipe-based approach, we'll teach you how to solve everyday difficulties and struggles you encounter using Kafka through hands-on examples.

Book Apache Hadoop 3 Quick Start Guide

Download or read book Apache Hadoop 3 Quick Start Guide written by Hrishikesh Vijay Karambelkar and published by Packt Publishing Ltd. This book was released on 2018-10-31 with total page 214 pages. Available in PDF, EPUB and Kindle. Book excerpt: A fast paced guide that will help you learn about Apache Hadoop 3 and its ecosystem Key FeaturesSet up, configure and get started with Hadoop to get useful insights from large data setsWork with the different components of Hadoop such as MapReduce, HDFS and YARN Learn about the new features introduced in Hadoop 3Book Description Apache Hadoop is a widely used distributed data platform. It enables large datasets to be efficiently processed instead of using one large computer to store and process the data. This book will get you started with the Hadoop ecosystem, and introduce you to the main technical topics, including MapReduce, YARN, and HDFS. The book begins with an overview of big data and Apache Hadoop. Then, you will set up a pseudo Hadoop development environment and a multi-node enterprise Hadoop cluster. You will see how the parallel programming paradigm, such as MapReduce, can solve many complex data processing problems. The book also covers the important aspects of the big data software development lifecycle, including quality assurance and control, performance, administration, and monitoring. You will then learn about the Hadoop ecosystem, and tools such as Kafka, Sqoop, Flume, Pig, Hive, and HBase. Finally, you will look at advanced topics, including real time streaming using Apache Storm, and data analytics using Apache Spark. By the end of the book, you will be well versed with different configurations of the Hadoop 3 cluster. What you will learnStore and analyze data at scale using HDFS, MapReduce and YARNInstall and configure Hadoop 3 in different modesUse Yarn effectively to run different applications on Hadoop based platformUnderstand and monitor how Hadoop cluster is managedConsume streaming data using Storm, and then analyze it using SparkExplore Apache Hadoop ecosystem components, such as Flume, Sqoop, HBase, Hive, and KafkaWho this book is for Aspiring Big Data professionals who want to learn the essentials of Hadoop 3 will find this book to be useful. Existing Hadoop users who want to get up to speed with the new features introduced in Hadoop 3 will also benefit from this book. Having knowledge of Java programming will be an added advantage.

Book Machine Learning with Apache Spark Quick Start Guide

Download or read book Machine Learning with Apache Spark Quick Start Guide written by Jillur Quddus and published by Packt Publishing Ltd. This book was released on 2018-12-26 with total page 233 pages. Available in PDF, EPUB and Kindle. Book excerpt: Combine advanced analytics including Machine Learning, Deep Learning Neural Networks and Natural Language Processing with modern scalable technologies including Apache Spark to derive actionable insights from Big Data in real-time Key FeaturesMake a hands-on start in the fields of Big Data, Distributed Technologies and Machine LearningLearn how to design, develop and interpret the results of common Machine Learning algorithmsUncover hidden patterns in your data in order to derive real actionable insights and business valueBook Description Every person and every organization in the world manages data, whether they realize it or not. Data is used to describe the world around us and can be used for almost any purpose, from analyzing consumer habits to fighting disease and serious organized crime. Ultimately, we manage data in order to derive value from it, and many organizations around the world have traditionally invested in technology to help process their data faster and more efficiently. But we now live in an interconnected world driven by mass data creation and consumption where data is no longer rows and columns restricted to a spreadsheet, but an organic and evolving asset in its own right. With this realization comes major challenges for organizations: how do we manage the sheer size of data being created every second (think not only spreadsheets and databases, but also social media posts, images, videos, music, blogs and so on)? And once we can manage all of this data, how do we derive real value from it? The focus of Machine Learning with Apache Spark is to help us answer these questions in a hands-on manner. We introduce the latest scalable technologies to help us manage and process big data. We then introduce advanced analytical algorithms applied to real-world use cases in order to uncover patterns, derive actionable insights, and learn from this big data. What you will learnUnderstand how Spark fits in the context of the big data ecosystemUnderstand how to deploy and configure a local development environment using Apache SparkUnderstand how to design supervised and unsupervised learning modelsBuild models to perform NLP, deep learning, and cognitive services using Spark ML librariesDesign real-time machine learning pipelines in Apache SparkBecome familiar with advanced techniques for processing a large volume of data by applying machine learning algorithmsWho this book is for This book is aimed at Business Analysts, Data Analysts and Data Scientists who wish to make a hands-on start in order to take advantage of modern Big Data technologies combined with Advanced Analytics.

Book Apache Ignite Quick Start Guide

Download or read book Apache Ignite Quick Start Guide written by Sujoy Acharya and published by Packt Publishing Ltd. This book was released on 2018-11-30 with total page 253 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build efficient, high-performance & scalable systems to process large volumes of data with Apache Ignite Key FeaturesUnderstand Apache Ignite's in-memory technologyCreate High-Performance app components with IgniteBuild a real-time data streaming and complex event processing systemBook Description Apache Ignite is a distributed in-memory platform designed to scale and process large volume of data. It can be integrated with microservices as well as monolithic systems, and can be used as a scalable, highly available and performant deployment platform for microservices. This book will teach you to use Apache Ignite for building a high-performance, scalable, highly available system architecture with data integrity. The book takes you through the basics of Apache Ignite and in-memory technologies. You will learn about installation and clustering Ignite nodes, caching topologies, and various caching strategies, such as cache aside, read and write through, and write behind. Next, you will delve into detailed aspects of Ignite’s data grid: web session clustering and querying data. You will learn how to process large volumes of data using compute grid and Ignite’s map-reduce and executor service. You will learn about the memory architecture of Apache Ignite and monitoring memory and caches. You will use Ignite for complex event processing, event streaming, and the time-series predictions of opportunities and threats. Additionally, you will go through off-heap and on-heap caching, swapping, and native and Spring framework integration with Apache Ignite. By the end of this book, you will be confident with all the features of Apache Ignite 2.x that can be used to build a high-performance system architecture. What you will learnUse Apache Ignite’s data grid and implement web session clusteringGain high performance and linear scalability with in-memory distributed data processingCreate a microservice on top of Apache Ignite that can scale and performPerform ACID-compliant CRUD operations on an Ignite cacheRetrieve data from Apache Ignite’s data grid using SQL, Scan and Lucene Text queryExplore complex event processing concepts and event streamingIntegrate your Ignite app with the Spring frameworkWho this book is for The book is for Big Data professionals who want to learn the essentials of Apache Ignite. Prior experience in Java is necessary.

Book Building Data Streaming Applications with Apache Kafka

Download or read book Building Data Streaming Applications with Apache Kafka written by Manish Kumar and published by Packt Publishing Ltd. This book was released on 2017-08-18 with total page 269 pages. Available in PDF, EPUB and Kindle. Book excerpt: Design and administer fast, reliable enterprise messaging systems with Apache Kafka About This Book Build efficient real-time streaming applications in Apache Kafka to process data streams of data Master the core Kafka APIs to set up Apache Kafka clusters and start writing message producers and consumers A comprehensive guide to help you get a solid grasp of the Apache Kafka concepts in Apache Kafka with pracitcalpractical examples Who This Book Is For If you want to learn how to use Apache Kafka and the different tools in the Kafka ecosystem in the easiest possible manner, this book is for you. Some programming experience with Java is required to get the most out of this book What You Will Learn Learn the basics of Apache Kafka from scratch Use the basic building blocks of a streaming application Design effective streaming applications with Kafka using Spark, Storm &, and Heron Understand the importance of a low -latency , high- throughput, and fault-tolerant messaging system Make effective capacity planning while deploying your Kafka Application Understand and implement the best security practices In Detail Apache Kafka is a popular distributed streaming platform that acts as a messaging queue or an enterprise messaging system. It lets you publish and subscribe to a stream of records, and process them in a fault-tolerant way as they occur. This book is a comprehensive guide to designing and architecting enterprise-grade streaming applications using Apache Kafka and other big data tools. It includes best practices for building such applications, and tackles some common challenges such as how to use Kafka efficiently and handle high data volumes with ease. This book first takes you through understanding the type messaging system and then provides a thorough introduction to Apache Kafka and its internal details. The second part of the book takes you through designing streaming application using various frameworks and tools such as Apache Spark, Apache Storm, and more. Once you grasp the basics, we will take you through more advanced concepts in Apache Kafka such as capacity planning and security. By the end of this book, you will have all the information you need to be comfortable with using Apache Kafka, and to design efficient streaming data applications with it. Style and approach A step-by –step, comprehensive guide filled with practical and real- world examples

Book Effective Kafka

    Book Details:
  • Author : Emil Koutanov
  • Publisher :
  • Release : 2020-03-17
  • ISBN :
  • Pages : 466 pages

Download or read book Effective Kafka written by Emil Koutanov and published by . This book was released on 2020-03-17 with total page 466 pages. Available in PDF, EPUB and Kindle. Book excerpt: The software architecture landscape has evolved dramatically over the past decade. Microservices have displaced monoliths. Data and applications are increasingly becoming distributed and decentralised. But composing disparate systems is a hard problem. More recently, software practitioners have been rapidly converging on event-driven architecture as a sustainable way of dealing with complexity - integrating systems without increasing their coupling.In Effective Kafka, Emil Koutanov explores the fundamentals of Event-Driven Architecture - using Apache Kafka - the world's most popular and supported open-source event streaming platform.You'll learn: - The fundamentals of event-driven architecture and event streaming platforms- The background and rationale behind Apache Kafka, its numerous potential uses and applications- The architecture and core concepts - the underlying software components, partitioning and parallelism, load-balancing, record ordering and consistency modes- Installation of Kafka and related tooling - using standalone deployments, clusters, and containerised deployments with Docker- Using CLI tools to interact with and administer Kafka classes, as well as publishing data and browsing topics- Using third-party web-based tools for monitoring a cluster and gaining insights into the event streams- Building stream processing applications in Java 11 using off-the-shelf client libraries- Patterns and best-practice for organising the application architecture, with emphasis on maintainability and testability of the resulting code- The numerous gotchas that lurk in Kafka's client and broker configuration, and how to counter them- Theoretical background on distributed and concurrent computing, exploring factors affecting their liveness and safety- Best-practices for running multi-tenanted clusters across diverse engineering teams, how teams collaborate to build complex systems at scale and equitably share the cluster with the aid of quotas- Operational aspects of running Kafka clusters at scale, performance tuning and methods for optimising network and storage utilisation- All aspects of Kafka security -including network segregation, encryption, certificates, authentication and authorization.The coverage is progressively delivered and carefully aimed at giving you a journey-like experience into becoming proficient with Apache Kafka and Event-Driven Architecture. The goal is to get you designing and building applications. And by the conclusion of this book, you will be a confident practitioner and a Kafka evangelist within your organisation - wielding the knowledge necessary to teach others.

Book Kafka in Action

    Book Details:
  • Author : Dylan Scott
  • Publisher : Simon and Schuster
  • Release : 2022-03-22
  • ISBN : 163835619X
  • Pages : 270 pages

Download or read book Kafka in Action written by Dylan Scott and published by Simon and Schuster. This book was released on 2022-03-22 with total page 270 pages. Available in PDF, EPUB and Kindle. Book excerpt: Master the wicked-fast Apache Kafka streaming platform through hands-on examples and real-world projects. In Kafka in Action you will learn: Understanding Apache Kafka concepts Setting up and executing basic ETL tasks using Kafka Connect Using Kafka as part of a large data project team Performing administrative tasks Producing and consuming event streams Working with Kafka from Java applications Implementing Kafka as a message queue Kafka in Action is a fast-paced introduction to every aspect of working with Apache Kafka. Starting with an overview of Kafka's core concepts, you'll immediately learn how to set up and execute basic data movement tasks and how to produce and consume streams of events. Advancing quickly, you’ll soon be ready to use Kafka in your day-to-day workflow, and start digging into even more advanced Kafka topics. About the technology Think of Apache Kafka as a high performance software bus that facilitates event streaming, logging, analytics, and other data pipeline tasks. With Kafka, you can easily build features like operational data monitoring and large-scale event processing into both large and small-scale applications. About the book Kafka in Action introduces the core features of Kafka, along with relevant examples of how to use it in real applications. In it, you’ll explore the most common use cases such as logging and managing streaming data. When you’re done, you’ll be ready to handle both basic developer- and admin-based tasks in a Kafka-focused team. What's inside Kafka as an event streaming platform Kafka producers and consumers from Java applications Kafka as part of a large data project About the reader For intermediate Java developers or data engineers. No prior knowledge of Kafka required. About the author Dylan Scott is a software developer in the insurance industry. Viktor Gamov is a Kafka-focused developer advocate. At Confluent, Dave Klein helps developers, teams, and enterprises harness the power of event streaming with Apache Kafka. Table of Contents PART 1 GETTING STARTED 1 Introduction to Kafka 2 Getting to know Kafka PART 2 APPLYING KAFK 3 Designing a Kafka project 4 Producers: Sourcing data 5 Consumers: Unlocking data 6 Brokers 7 Topics and partitions 8 Kafka storage 9 Management: Tools and logging PART 3 GOING FURTHER 10 Protecting Kafka 11 Schema registry 12 Stream processing with Kafka Streams and ksqlDB

Book Apache Spark Quick Start Guide

Download or read book Apache Spark Quick Start Guide written by Shrey Mehrotra and published by Packt Publishing Ltd. This book was released on 2019-01-31 with total page 150 pages. Available in PDF, EPUB and Kindle. Book excerpt: A practical guide for solving complex data processing challenges by applying the best optimizations techniques in Apache Spark. Key FeaturesLearn about the core concepts and the latest developments in Apache SparkMaster writing efficient big data applications with Spark’s built-in modules for SQL, Streaming, Machine Learning and Graph analysisGet introduced to a variety of optimizations based on the actual experienceBook Description Apache Spark is a flexible framework that allows processing of batch and real-time data. Its unified engine has made it quite popular for big data use cases. This book will help you to get started with Apache Spark 2.0 and write big data applications for a variety of use cases. It will also introduce you to Apache Spark – one of the most popular Big Data processing frameworks. Although this book is intended to help you get started with Apache Spark, but it also focuses on explaining the core concepts. This practical guide provides a quick start to the Spark 2.0 architecture and its components. It teaches you how to set up Spark on your local machine. As we move ahead, you will be introduced to resilient distributed datasets (RDDs) and DataFrame APIs, and their corresponding transformations and actions. Then, we move on to the life cycle of a Spark application and learn about the techniques used to debug slow-running applications. You will also go through Spark’s built-in modules for SQL, streaming, machine learning, and graph analysis. Finally, the book will lay out the best practices and optimization techniques that are key for writing efficient Spark applications. By the end of this book, you will have a sound fundamental understanding of the Apache Spark framework and you will be able to write and optimize Spark applications. What you will learnLearn core concepts such as RDDs, DataFrames, transformations, and moreSet up a Spark development environmentChoose the right APIs for your applicationsUnderstand Spark’s architecture and the execution flow of a Spark applicationExplore built-in modules for SQL, streaming, ML, and graph analysisOptimize your Spark job for better performanceWho this book is for If you are a big data enthusiast and love processing huge amount of data, this book is for you. If you are data engineer and looking for the best optimization techniques for your Spark applications, then you will find this book helpful. This book also helps data scientists who want to implement their machine learning algorithms in Spark. You need to have a basic understanding of any one of the programming languages such as Scala, Python or Java.

Book Real Time Streaming with Apache Kafka  Spark  and Storm

Download or read book Real Time Streaming with Apache Kafka Spark and Storm written by Brindha Priyadarshini Jeyaraman and published by BPB Publications. This book was released on 2021-08-20 with total page 196 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build a platform using Apache Kafka, Spark, and Storm to generate real-time data insights and view them through Dashboards. KEY FEATURES ● Extensive practical demonstration of Apache Kafka concepts, including producer and consumer examples. ● Includes graphical examples and explanations of implementing Kafka Producer and Kafka Consumer commands and methods. ● Covers integration and implementation of Spark-Kafka and Kafka-Storm architectures. DESCRIPTION Real-Time Streaming with Apache Kafka, Spark, and Storm is a book that provides an overview of the real-time streaming concepts and architectures of Apache Kafka, Storm, and Spark. The readers will learn how to build systems that can process data streams in real time using these technologies. They will be able to process a large amount of real-time data and perform analytics or generate insights as a result of this. The architecture of Kafka and its various components are described in detail. A Kafka Cluster installation and configuration will be demonstrated. The Kafka publisher-subscriber system will be implemented in the Eclipse IDE using the Command Line and Java. The book discusses the architecture of Apache Storm, the concepts of Spout and Bolt, as well as their applications in a Transaction Alert System. It also describes Spark's core concepts, applications, and the use of Spark to implement a microservice. To learn about the process of integrating Kafka and Storm, two approaches to Spark and Kafka integration will be discussed. This book will assist a software engineer to transition to a Big Data engineer and Big Data architect by providing knowledge of big data processing and the architectures of Kafka, Storm, and Spark Streaming. WHAT YOU WILL LEARN ● Creation of Kafka producers, consumers, and brokers using command line. ● End-to-end implementation of Kafka messaging system with Java in Eclipse. ● Perform installation and creation of a Storm Cluster and execute Storm Management commands. ● Implement Spouts, Bolts and a Topology in Storm for Transaction alert application system. ● Perform the implementation of a microservice using Spark in Scala IDE. ● Learn about the various approaches of integrating Kafka and Spark. ● Perform integration of Kafka and Storm using Java in the Eclipse IDE. WHO THIS BOOK IS FOR This book is intended for Software Developers, Data Scientists, and Big Data Architects who want to build software systems to process data streams in real time. To understand the concepts in this book, knowledge of any programming language such as Java, Python, etc. is needed. TABLE OF CONTENTS 1. Introduction to Kafka 2. Installing Kafka 3. Kafka Messaging 4. Kafka Producers 5. Kafka Consumers 6. Introduction to Storm 7. Installation and Configuration 8. Spouts and Bolts 9. Introduction to Spark 10. Spark Streaming 11. Kafka Integration with Storm 12. Kafka Integration with Spark

Book Gradle Beyond the Basics

Download or read book Gradle Beyond the Basics written by Tim Berglund and published by "O'Reilly Media, Inc.". This book was released on 2013-07-16 with total page 86 pages. Available in PDF, EPUB and Kindle. Book excerpt: If you’re familiar with Gradle’s basics elements—possibly through the author’s previous O’Reilly book, Building and Testing with Gradle—this more advanced guide provides the recipes, techniques, and syntax to help you master this build automation tool. With clear, concise explanations and lots of ready-to-use code examples, you’ll explore four discrete areas of Gradle functionality: file operations, custom Gradle plugins, build lifecycle hooks, and dependency management. Learn how to use Gradle’s rich set of APIs and Groovy-based Domain Specific Language to customize build software that actually conforms to your product. By using the techniques in this book, you’ll be able to write domain-specific builds that support every other line of code your team creates. Examine Gradle’s file API, including copy tasks, pattern matching, content filtering, and the FileCollection interface Understand the process for building and packaging a custom Gradle plug-in Manage build complexity with hook methods and Gradle’s rule feature Learn how Gradle handles dependency management natively and through customization Explore Gradle’s core plug-ins as well as key examples from the Gradle community

Book Kafka Streams   Real time Stream Processing

Download or read book Kafka Streams Real time Stream Processing written by Prashant Kumar Pandey and published by Learning Journal. This book was released on 2019-03-26 with total page 350 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book Kafka Streams - Real-time Stream Processing helps you understand the stream processing in general and apply that skill to Kafka streams programming. This book is focusing mainly on the new generation of the Kafka Streams library available in the Apache Kafka 2.x. The primary focus of this book is on Kafka Streams. However, the book also touches on the other Apache Kafka capabilities and concepts that are necessary to grasp the Kafka Streams programming. Who should read this book? Kafka Streams: Real-time Stream Processing is written for software engineers willing to develop a stream processing application using Kafka Streams library. I am also writing this book for data architects and data engineers who are responsible for designing and building the organization’s data-centric infrastructure. Another group of people is the managers and architects who do not directly work with Kafka implementation, but they work with the people who implement Kafka Streams at the ground level. What should you already know? This book assumes that the reader is familiar with the basics of Java programming language. The source code and examples in this book are using Java 8, and I will be using Java 8 lambda syntax, so experience with lambda will be helpful. Kafka Streams is a library that runs on Kafka. Having a good fundamental knowledge of Kafka is essential to get the most out of Kafka Streams. I will touch base on the mandatory Kafka concepts for those who are new to Kafka. The book also assumes that you have some familiarity and experience in running and working on the Linux operating system.