EBookClubs

Read Books & Download eBooks Full Online

EBookClubs

Read Books & Download eBooks Full Online

Book Anisotropic Output based Adaptation with Tetrahedral Cut Cells for Compressible Flows

Download or read book Anisotropic Output based Adaptation with Tetrahedral Cut Cells for Compressible Flows written by Michael Andrew Park and published by . This book was released on 2008 with total page 328 pages. Available in PDF, EPUB and Kindle. Book excerpt: Anisotropic, adaptive meshing for flows around complex, three-dimensional bodies remains a barrier to increased automation in computational fluid dynamics. Two specific advances are introduced in this thesis. First, a finite-volume discretization for tetrahedral cut-cells is developed that makes possible robust, anisotropic adaptation on complex bodies. Through grid refinement studies on inviscid flows, this cut-cell discretization is shown to produce similar accuracy as boundary-conforming meshes with a small increase in the degrees of freedom. The cut-cell discretization is then combined with output-based error estimation and anisotropic adaptation such that the mesh size and shape are controlled by the output error estimate and the Hessian (i.e. second derivatives) of the Mach number, respectively. Using a parallel implementation, this output-based adaptive method is applied to a series of sonic boom test cases and the automated ability to correctly estimate pressure signatures at several body lengths is demonstrated starting with initial meshes of a few thousand control volumes. Second, a new framework for adaptation is introduced in which error estimates are directly controlled by removing the common intermediate step of specifying a desired mesh size and shape. As a result, output error control can be achieved without the adhoc selection of a specific field (such as Mach number) to control anisotropy, rather anisotropy in the mesh naturally results from both the primal and dual solutions. Furthermore, the direct error control extends naturally to higher-order discretizations for which the use of a Hessian is no longer appropriate to determine mesh shape. The direct error control adaptive method is demonstrated on a series of simple test cases to control interpolation error and discontinuous Galerkin finite element output error. This new direct method produces grids with less elements but the same accuracy as existing metric-based approaches.

Book Grid Adaptation for Functional Outputs of Compressible Flow Simulations

Download or read book Grid Adaptation for Functional Outputs of Compressible Flow Simulations written by David Anthony Venditti and published by . This book was released on 2002 with total page 180 pages. Available in PDF, EPUB and Kindle. Book excerpt: (Cont.) Output-based adaptive criteria are incorporated into an anisotropic grid-adaptive procedure for laminar Navier-Stokes simulations. The proposed method can be viewed as a merging of Hessian-based adaptation with output error control. A series of airfoil test cases are presented for Reynolds numbers ranging from 5,000 to 100,000. The proposed adaptive method is shown to compare very favorably in terms of output accuracy and computational efficiency relative to pure Hessian-based adaptation.

Book An Anisotropic Adaptive Method for the Solution of 3 D Inviscid and Viscous Compressible Flows

Download or read book An Anisotropic Adaptive Method for the Solution of 3 D Inviscid and Viscous Compressible Flows written by Anna Tam and published by . This book was released on 1998 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: The solution of complex three-dimensional computational fluid dynamics (CFD) problems in general necessitates the use of a large number of mesh points to approximate directional flow features such as shocks, boundary layers, vortices and wakes. Such large grid sizes have motivated researchers to investigate methods of introducing very high aspect ratio elements to capture these features. In this Thesis, an anisotropic adaptive grid method has been developed for the solution of three-dimensional inviscid and viscous flows by the finite element method. An edge-based error estimate drives a mesh movement strategy that allows directional stretching and re-orientation of the grid with more mesh points introduced along those directions with rapidly changing gradients. The error estimate is built from a modified positive-definite form of the Hessian tensor of a selected solution variable or combination of variables. The resulting metric tensor controls the magnitude as well as, the direction of the grid stretching. The desired directionally adapted anisotropic mesh is constructed in physical space by a coordinate transformation based on this tensor. This research thus seeks a near-isotropic mesh in the transformed metric space and an equidistribution of the error over the mesh edges. The adaptive strategy can be considered to be the first 3-D implementation of an improved spring analogy-based algorithm originally applied on quadrilateral meshes. The adaptive methodology has been validated on various benchmark cases on both hexahedral and tetrahedral meshes. The numerical results obtained span inviscid and viscous flows, as well as internal and external aerodynamics. The effectiveness of the adaptive scheme to equidistribute the interpolation error over the edges of tetrahedral and hexahedral meshes has been gauged on analytical test cases where near-Gaussian distributions of the error were obtained. It was further demonstrated that the error estimate closely follows the true solution error. In analyzing the solution error of different sized non-adapted and adapted grids, one could not only achieve the same level of solution error by adapting and solving on a much coarser grid, but a significant reduction in solution time as well. All test cases revealed that the flow solver required lower amounts of artificial dissipation for solution on the final adapted grids. The current work should convincingly pave the way for its logical extension to unstructured grids, taking further advantage of refinement, coarsening and edge-swapping operations. It is strongly anticipated that this approach will shortly result in "optimal" grids.

Book Handbook of Grid Generation

Download or read book Handbook of Grid Generation written by Joe F. Thompson and published by CRC Press. This book was released on 1998-12-29 with total page 1136 pages. Available in PDF, EPUB and Kindle. Book excerpt: Handbook of Grid Generation addresses the use of grids (meshes) in the numerical solutions of partial differential equations by finite elements, finite volume, finite differences, and boundary elements. Four parts divide the chapters: structured grids, unstructured girds, surface definition, and adaption/quality. An introduction to each section provides a roadmap through the material. This handbook covers: Fundamental concepts and approaches Grid generation process Essential mathematical elements from tensor analysis and differential geometry, particularly relevant to curves and surfaces Cells of any shape - Cartesian, structured curvilinear coordinates, unstructured tetrahedra, unstructured hexahedra, or various combinations Separate grids overlaid on one another, communicating data through interpolation Moving boundaries and internal interfaces in the field Resolving gradients and controlling solution error Grid generation codes, both commercial and freeware, as well as representative and illustrative grid configurations Handbook of Grid Generation contains 37 chapters as well as contributions from more than 100 experts from around the world, comprehensively evaluating this expanding field and providing a fundamental orientation for practitioners.

Book An Introduction to Reservoir Simulation Using MATLAB GNU Octave

Download or read book An Introduction to Reservoir Simulation Using MATLAB GNU Octave written by Knut-Andreas Lie and published by Cambridge University Press. This book was released on 2019-08-08 with total page 677 pages. Available in PDF, EPUB and Kindle. Book excerpt: Presents numerical methods for reservoir simulation, with efficient implementation and examples using widely-used online open-source code, for researchers, professionals and advanced students. This title is also available as Open Access on Cambridge Core.

Book Computational Fluid Dynamics

Download or read book Computational Fluid Dynamics written by Jiri Blazek and published by Elsevier. This book was released on 2005-12-20 with total page 491 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational Fluid Dynamics (CFD) is an important design tool in engineering and also a substantial research tool in various physical sciences as well as in biology. The objective of this book is to provide university students with a solid foundation for understanding the numerical methods employed in today's CFD and to familiarise them with modern CFD codes by hands-on experience. It is also intended for engineers and scientists starting to work in the field of CFD or for those who apply CFD codes. Due to the detailed index, the text can serve as a reference handbook too. Each chapter includes an extensive bibliography, which provides an excellent basis for further studies.

Book International Aerospace Abstracts

Download or read book International Aerospace Abstracts written by and published by . This book was released on 1999 with total page 1016 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Government Reports Announcements   Index

Download or read book Government Reports Announcements Index written by and published by . This book was released on 1996 with total page 814 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Basics of Fluid Mechanics and Introduction to Computational Fluid Dynamics

Download or read book Basics of Fluid Mechanics and Introduction to Computational Fluid Dynamics written by Titus Petrila and published by Springer Science & Business Media. This book was released on 2006-06-14 with total page 513 pages. Available in PDF, EPUB and Kindle. Book excerpt: The present book – through the topics and the problems approach – aims at filling a gap, a real need in our literature concerning CFD (Computational Fluid Dynamics). Our presentation results from a large documentation and focuses on reviewing the present day most important numerical and computational methods in CFD. Many theoreticians and experts in the field have expressed their - terest in and need for such an enterprise. This was the motivation for carrying out our study and writing this book. It contains an important systematic collection of numerical working instruments in Fluid Dyn- ics. Our current approach to CFD started ten years ago when the Univ- sity of Paris XI suggested a collaboration in the field of spectral methods for fluid dynamics. Soon after – preeminently studying the numerical approaches to Navier–Stokes nonlinearities – we completed a number of research projects which we presented at the most important inter- tional conferences in the field, to gratifying appreciation. An important qualitative step in our work was provided by the dev- opment of a computational basis and by access to a number of expert softwares. This fact allowed us to generate effective working programs for most of the problems and examples presented in the book, an - pect which was not taken into account in most similar studies that have already appeared all over the world.

Book Recent Developments in Theoretical and Experimental Fluid Mechanics

Download or read book Recent Developments in Theoretical and Experimental Fluid Mechanics written by U. Müller and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 663 pages. Available in PDF, EPUB and Kindle. Book excerpt: Dedicated to Prof. Dr.-Ing. J. Zierep

Book Computational Methods for Fluid Dynamics

Download or read book Computational Methods for Fluid Dynamics written by Joel H Ferziger and published by . This book was released on 1996-02-14 with total page 380 pages. Available in PDF, EPUB and Kindle. Book excerpt:

Book Computational Fluid Dynamics for Engineers

Download or read book Computational Fluid Dynamics for Engineers written by Bengt Andersson and published by Cambridge University Press. This book was released on 2011-12-22 with total page 203 pages. Available in PDF, EPUB and Kindle. Book excerpt: Computational fluid dynamics, CFD, has become an indispensable tool for many engineers. This book gives an introduction to CFD simulations of turbulence, mixing, reaction, combustion and multiphase flows. The emphasis on understanding the physics of these flows helps the engineer to select appropriate models to obtain reliable simulations. Besides presenting the equations involved, the basics and limitations of the models are explained and discussed. The book combined with tutorials, project and power-point lecture notes (all available for download) forms a complete course. The reader is given hands-on experience of drawing, meshing and simulation. The tutorials cover flow and reactions inside a porous catalyst, combustion in turbulent non-premixed flow, and multiphase simulation of evaporation spray respectively. The project deals with design of an industrial-scale selective catalytic reduction process and allows the reader to explore various design improvements and apply best practice guidelines in the CFD simulations.

Book Atmospheric Boundary Layer

    Book Details:
  • Author : Jordi Vil...-Guerau de Arellano
  • Publisher : Cambridge University Press
  • Release : 2015-06-04
  • ISBN : 1107090946
  • Pages : 283 pages

Download or read book Atmospheric Boundary Layer written by Jordi Vil...-Guerau de Arellano and published by Cambridge University Press. This book was released on 2015-06-04 with total page 283 pages. Available in PDF, EPUB and Kindle. Book excerpt: Based on more than 20 years of research and lecturing, Jordi Vil...-Guerau de Arellano and his team's textbook provides an excellent introduction to the interactions between the atmosphere and the land for advanced undergraduate and graduate students and a reference text for researchers in atmospheric physics and chemistry, hydrology, and plant physiology. The combination of the book, which provides the essential theoretical concepts, and the associated interactive Chemistry Land-surface Atmosphere Soil Slab (CLASS) software, which provides hands-on practical exercises and allows students to design their own numerical experiments, will prove invaluable for learning about many aspects of the soil-vegetation-atmosphere system. This book has a modular and flexible structure, allowing instructors to accommodate it to their own learning-outcome needs.

Book Unsteady Computational Fluid Dynamics in Aeronautics

Download or read book Unsteady Computational Fluid Dynamics in Aeronautics written by P.G. Tucker and published by Springer Science & Business Media. This book was released on 2013-08-30 with total page 432 pages. Available in PDF, EPUB and Kindle. Book excerpt: The field of Large Eddy Simulation (LES) and hybrids is a vibrant research area. This book runs through all the potential unsteady modelling fidelity ranges, from low-order to LES. The latter is probably the highest fidelity for practical aerospace systems modelling. Cutting edge new frontiers are defined. One example of a pressing environmental concern is noise. For the accurate prediction of this, unsteady modelling is needed. Hence computational aeroacoustics is explored. It is also emerging that there is a critical need for coupled simulations. Hence, this area is also considered and the tensions of utilizing such simulations with the already expensive LES. This work has relevance to the general field of CFD and LES and to a wide variety of non-aerospace aerodynamic systems (e.g. cars, submarines, ships, electronics, buildings). Topics treated include unsteady flow techniques; LES and hybrids; general numerical methods; computational aeroacoustics; computational aeroelasticity; coupled simulations and turbulence and its modelling (LES, RANS, transition, VLES, URANS). The volume concludes by pointing forward to future horizons and in particular the industrial use of LES. The writing style is accessible and useful to both academics and industrial practitioners. From the reviews: "Tucker's volume provides a very welcome, concise discussion of current capabilities for simulating and modellng unsteady aerodynamic flows. It covers the various pos sible numerical techniques in good, clear detail and presents a very wide range of practical applications; beautifully illustrated in many cases. This book thus provides a valuable text for practicing engineers, a rich source of background information for students and those new to this area of Research & Development, and an excellent state-of-the-art review for others. A great achievement." Mark Savill FHEA, FRAeS, C.Eng, Professor of Computational Aerodynamics Design & Head of Power & Propulsion Sciences, Department of Power & Propulsion, School of Engineering, Cranfield University, Bedfordshire, U.K. "This is a very useful book with a wide coverage of many aspects in unsteady aerodynamics method development and applications for internal and external flows." L. He, Rolls-Royce/RAEng Chair of Computational Aerothermal Engineering, Oxford University, U.K. "This comprehensive book ranges from classical concepts in both numerical methods and turbulence modelling approaches for the beginner to latest state-of-the-art for the advanced practitioner and constitutes an extremely valuable contribution to the specific Computational Fluid Dynamics literature in Aeronautics. Student and expert alike will benefit greatly by reading it from cover to cover." Sébastien Deck, Onera, Meudon, France

Book Solving PDEs in Python

    Book Details:
  • Author : Hans Petter Langtangen
  • Publisher : Springer
  • Release : 2017-03-21
  • ISBN : 3319524623
  • Pages : 152 pages

Download or read book Solving PDEs in Python written by Hans Petter Langtangen and published by Springer. This book was released on 2017-03-21 with total page 152 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book offers a concise and gentle introduction to finite element programming in Python based on the popular FEniCS software library. Using a series of examples, including the Poisson equation, the equations of linear elasticity, the incompressible Navier–Stokes equations, and systems of nonlinear advection–diffusion–reaction equations, it guides readers through the essential steps to quickly solving a PDE in FEniCS, such as how to define a finite variational problem, how to set boundary conditions, how to solve linear and nonlinear systems, and how to visualize solutions and structure finite element Python programs. This book is open access under a CC BY license.

Book Numerical Methods for Elliptic and Parabolic Partial Differential Equations

Download or read book Numerical Methods for Elliptic and Parabolic Partial Differential Equations written by Peter Knabner and published by Springer Science & Business Media. This book was released on 2003-06-26 with total page 437 pages. Available in PDF, EPUB and Kindle. Book excerpt: This text provides an application oriented introduction to the numerical methods for partial differential equations. It covers finite difference, finite element, and finite volume methods, interweaving theory and applications throughout. The book examines modern topics such as adaptive methods, multilevel methods, and methods for convection-dominated problems and includes detailed illustrations and extensive exercises.